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Abstract

We suggest a new approach to the linearized gap equations in the
BCS-theory which enable us to determine the upper critical field in
the semi-classical approximation for the model electron energy spec-
trum. It is shown that for electron systems with relatively strong BCS
coupling having the Landau level (LL) spectrum with the level width
increasing far from the Fermi level, the upper critical field has anom-
alous upward curvature. We also discuss strong coupling for energy
independent LL broadening. In this case form of the Hc2 (T ) curve is
insignificantly different from that obtained in the Werthamer-Helfand-
Hohenberg theory.

PACS: 52.20.Dq, 52.80.Mg

The quasi-classical approach developed by Gor’kov [1] and byWerthamer-
Helfand-Hohenberg [2] predicts the universal behavior of the upper critical
field in extremely type II superconductors with s-wave electron pairing. This
theoretical Hc2 (T )-curve which has a negative curvature in all temperature
range well describes the experimental data in conventional superconductors.
The recent reports on an anomalous dependence of Hc2 (T ) in a number of
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novel materials [3 - 7] have renewed interest in this problem. The observed
upward curvature reported in these publications is found in a startling con-
trast to the convex quasi-classical form. A few attempts were undertaken
to explain this phenomenon. The upward curvature of Hc2 (T ) just below
Tc (critical temperature at zero field) have been obtained in the BCS theory
with d-wave superconductivity. Some other approaches such as the bipo-
laron theory of cuprates [8] suggest new non-BSC mechanism of electron
pairing. At the same time, the attempts, based on the theory of conven-
tional superconductors, to describe the anomalous behavior by accounting
for the Landau level (LL) quantization [10] with relatively strong BCS cou-
pling [11] show a clear upward dependence in Hc2 (T ) only at the very low
temperature, T/Tc . .1 giving a support to other theories.

In the present paper we examine in the framework of the BCS approach
the effect of the structure of quasi particle spectrum on the temperature
dependence of the upper critical field. The developed new representation
of the leading term in the Gorkov expansion provides us a simple tool for
analysis of different spectrum realizations. In particular, we consider the
effect in Hc2 (T ) due to energy dependent broadening of LLs. Such inho-
mogeneous broadening could arise for example due to stronger influence of
crystal lattice potential the electrons with small energy leading, therefore,
to deviations from Fermi-liquid theory for excitations well above Fermi level.
Among other reasons which could give upward Hc2 (T )-curvature we discuss
such ones as the strong BSC coupling, mini-band structure of the electron
energy spectrum, and the Fulde-Ferrell-Larkin-Ovchinnikov pairing due to
spin-splitting of LLs. In these models it was found that Hc2 (T ) has a form
typical for WHH-theory with well known [12] sharp increase at T → 0 due
to resonance pairing. This asymptotic concave curvature can be extended
to relatively small temperature region, T/Tc . .1 [11] with decreasing of the
BSC coupling constant. Note, however, that the predictions in this region
are problematic since the contribution from the resonance pairing is very
sensitive to fine level structure. Impurity scattering and diamagnetic pair
breaking can radically affect the upper critical field [12, 13].

In the lowest LL approximation near transition the condensation energy
is determined by the quadratic term in the Gor’kov expansion

F =

µ
1

V
−A

¶
∆20

where V is the BCS constant. The magnitude of A is given by quantum

708



mechanical expression

A =
kBT

2πa2H

X
ν

Z
dkz
2π

∞X
n,n0=0

Cnn0gn (kz, iων) gn0 (kz,−iων) (1)

Here gn (kz, iων) is the temperature Green function of electron on LL with
index n and momentum kz along magnetic field H = (0, 0,H) ,

g−1n (kz, iων) = µ− ~ωc (n+ 1/2)− ε (kz) + iων

ων = πT (2ν + 1) is the Matsubara frequency, and

Cnn0 =

∞Z
0

e−2tLn (t)Ln0 (t) dt =
(n+ n0)!

n!n0!2n+n0+1

is the overlap integral between n and n0 orbitals. For isotropic 3D SC the
energy in the z-direction is determined as ε (kz) = k2z/2m . The expres-
sion, Eq.(1), is UV divergent. This infinity can be removed by means of
restricting the energy of electrons forming the electron pairs with the De-
bye frequency, ωD. Usually, in the literature, two schemes of the UV cutoff
implementation are considered. In the first one the sum over Matsubara
frequency is performed in the energy interval |ων | ≤ ωD with infinite sum-
mation over LLs. In the alternative scheme, the sums over LLs are restricted
by |n− nF | ≤ nD ≡ ωD/~ωc (in neglecting corrections due to z-direction)
Both approaches are equivalent at high temperatures and give qualitatively
similar results ( with a small number difference) in the low temperature
region (see below and [14]).

The parameters of the mean field transition are determined from equa-
tion

A =
1

V
≡ D3d

λ
(2)

where A is a function of temperature and magnetic field and λ = V D3d. At
zero magnetic field the last equation yields maximal critical temperature,
Tc (0) = Tc, which is reduced with an increase of magnetic field. Below
we discuss shape of the Tc (H)-curve following from solution to Eq.(1) for
different models of the electron density of states.

It is convenient to write down Eq.(1) in another equivalent form. Con-
sidering, at first, the finite Matsubara sum and using integral representation
for Green functions,

£
nF − n− x2 ± iω

¤−1
=

Z ∞

0
dτe±iτ[nF−n−x

2+iω]
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one can perform the summation over LLs with help of well known identity,

∞X
n=0

znLn (t) = (1− z)−1 exp
µ

tz

z − 1
¶
.

The subsequent integration over t transforms Eq.(1) to

A =
1

2π
D3d

2πT√
µ~ωc

νmaxX
ν=0

∞Z
−∞

dx

∞Z
0

dτ1dτ2e
−ων(τ1+τ2)+i(nF−x2)(τ1−τ2)

2− e−iτ1 − eiτ2
(3)

where

eων = ων
~ωc

,
~2k2z
2mz

= ~ωcx2, and D3d =
mpF
2π2~3

is the density of states per spin on Fermi surface.

Figure 1: Distributions of poles in Eq. (3). Poles situated on different
diagonals contribute to corresponding harmonics of the condensation energy.

The integrand in Eq.(3) has poles in the points of square lattice: τ1 =
2πk, τ2 = 2πl, k, l = 0, 1, ... (Fig. 1). In the quasi-classical region, that is
at large values of nF ' ~ωc

µ À 1, the integral Eq.(3) is dominated by the
vicinities around the singular points. This important observation enables us
to evaluate the contribution of every singularity separately. Another useful
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property of Eq.(3) is that integration around different diagonals, τ1 = τ2 ±
2πm, gives contributions to different harmonics corresponding to number
m. Note that the symmetry between m and −m follows from the invariance
of Eq.(3) under complex conjugation and exchange τ1 ¿ τ2. Therefore, it
is enough to estimate the real part of Eq.(3) at τ1 ≥ τ2.

For simplicity we restrict our consideration to zero and first harmonics.
However one should note that to obtain true shape of the quantum oscilla-
tions in Hc2 at very low temperature, many harmonics should be taken into
account.

The zero harmonic is determined by contribution from the lattice points
with k = l. It is convenient to separate the origin from other diagonal points
since these contributions have different physical meanings. The integral from
τ1, τ2 ¿ 1 is dominated by a great number of the off-diagonal terms and cor-
responds to the semi-classical contribution to the condensation energy. The
integrals around τ1 ∼ τ2 ∼ 2πk ( k > 1 ) describe the resonance diagonal
pairing. These terms are much smaller because of relatively small number
of diagonal terms. However, they are singular in the zero temperature limit
so that their total value can exceed the off-diagonal terms at T → 0.

Taking into account a specific feature of the zero point, k = l = 0, ap-
pearing from the reduced integration region with respect to other singulari-
ties (see Fig. 1), the integration around this point can be readily done if we
expand the exponential factors in the denominator of Eq.(3) at τ1, τ2 ≤ τ0
and assume that

√
nF τ0 À 1 . The result is given by expression

A
(sc)
0 = 2D3d

2πT√
µ~ωc

νmaxX
ν=0

Φ

µ
2ων√
µ~ωc

¶

= D3d

∞Z
0

dy

y2

³
2πT√
µ~ωc

y
´

sinh
³

2πT√
µ~ωc

y
´ µ1− e

− 2ωD√
µ~ωc

y
¶
e−y

2
Erfi (y) (4)

where

Φ (') =

∞Z
0

dy

y
e−'y−y2Erfi (y) and Erfi (y) =

Z y

0
exp

¡
x2
¢
dx.

Here we have neglected the effects arising from crossing of the sharp cut off
by a level from the discrete Matsubara spectrum and have assumed that T ¿
ωD. Eq.(4) was derived by WHH using the quasi-classical representation for
Green function.
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The similar consideration can be carried out for a 2D system. The result
is obtained from Eq.(4) by the replacement, D3dErfi (y) /y → D2d =

m
2π~2 ,

which extracts the contribution from extreme orbits with kz = 0. Thus in
2D system the asymptotic behavior at y → ∞ is determined by the factor
exp

¡−y2¢ whereas in 3D it is like ∼ 1/y. It can be shown that quasi 2D
systems are characterized by 3D-like damping at relatively small y crossing
to an exponential decrease at y → ∞. Note that above damping factor
due to energy quantization is important only if the temperature damping is
weak at y ∼ 1. This condition is satisfied only at 2πT . √µ~ωc. At high
temperature there is no difference between 2D and 3D systems.

The finite LLs sum,
Pn0

n=0 =
P∞

n=0 θ (n0 − n), can be implemented in
framework of the suggested approach with help of the integral representation
for the θ-function:

θ (x) =
1

2πi

Z
exp (ixξ)

ξ − iε
dξ.

After redefinition of z by a factor e−iξ the sums over LLs are calculated as
previously described and the remained integrals over ξ and ξ0 are estimated
by integration in complex plane. In the quasi classical limit, nF À 1, the
summation in the energy interval ω1 ≤ ~ωcn ≤ ω2 results in

A
(sc)
0 = D3d

∞Z
0

dy

y2

³
2πT√
µ~ωc

y
´

sinh
³

2πT√
µ~ωc

y
´ ×

1

π

·
Si

µ
2 (ω2 − µ)√

µ~ωc
y

¶
+ Si

µ
2 (µ− ω1)√

µ~ωc
y

¶¸
e−y

2
Erfi (y) (5)

where

Si (x) =

Z x

0

sin t

t
dt.

Substituting in the above formula ω1,2 = µ∓ωD and comparing with Eq. (4)
one can see that the difference between two schemes of the UV cutoff, consist-
ing in replacement of

¡
1− exp ¡−2ωDy/√µ~ωc¢¢ by 2

πSi
¡
2ωDy/

√
µ~ωc

¢
,

takes place only for y .
√
µ~ωc/2ωD and can not qualitatively influence the

condensation energy.
To lend a credence to Eq. (3) we have derived low and high temperature

asymptotics for the upper critical field paying special attention to the case of
small ωD (strong BCS coupling) as another possible reason for anomalous be-
havior of the upper critical field. Following to WHH and Gunter-Gruenberg
approaches the Matsubara sum restriction have been used.
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In the high temperature limit given by condition min (') = 2πT√
µ~ωc

& 1
with πT ¿ ωD , the function Φ (') is estimated as Φ (') ' 1

2' − 1
6'3 by

equation

A→ A
(sc)
0 = 2D3d

νmaxX
ν=0

µ
1

2ν + 1
− 1
6

µ~ωc
(πT )2

1

(2ν + 1)3
+ ..

¶
' D3d

µ
ln

µ
2eCωD
πT

¶
− 7ζ (3)

48

µ~ωc
(πT )2

¶
(6)

which leads to the semi classical equation for the upper critical field [2]:

ln
Tc
T
=
7ζ (3)

48

µ~ωc
(πT )2

,

where ζ is the Riemann zeta function and C ' .578 is the Eiler constant.
The transition temperature at zero magnetic field, Tc, is given by

ln

µ
2eCωD
πTc

¶
=
1

λ
.

In the case of strong interaction ( large λ ) when ωD
πTc

. 1 , the low field
asymptotic behavior is insignificantly changed to

T

Tc
= 1− π2

12

µ~ωc
(πT )2

with the critical temperature Tc = π
4λωD which can exceed the Debye fre-

quency. It should be noted that independently of ωD the function Tc (H) is
linear one at H → 0.

Let us now consider the low temperature limit, 2πT√
µ~ωc

. 1. Note at first
that A tends to a constant value at T → 0 so that the upper critical field at
zero temperature is given by the integral equation

I3d

µ
2ωD√
µ~ωc2

¶
≡

∞Z
0

dy

y2

µ
1− e

− 2ωD√
µ~ωc2

y
¶
e−y

2
Erfi (y) =

1

λ
(7)

If 2ωD√
µ~ωc2

& 1 we can use the asymptotic formula for above integral at large
arguments, I3d (2a) ' 1 + C

2 + ln a, which leads to expression :

~ωHW
c2 =

e2

4eC
(πTc)

2

µ
.
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At this magnitude of magnetic field the parameter in above integral,

2ωD√
µ~ωc2

=
4

e1−C/2
ωD
πTc

,

is large if Debay frequency is not too small.
For 2D system the upper critical field at zero temperature is determined

from equation,

I2d

µ
2ωD√
µ~ωc2

¶
≡

∞Z
0

dy

y

µ
1− e

− 2ωD√
µ~ωc2

y
¶
e−y

2
= ln

µ
2eCωD
πTc

¶
(8)

which in the limit, 2ωD√
µ~ωc2

& 1, has a solution,

~ωHW
c2 =

1

eC
(πTc)

2

µ
.

It is obtained readily from asymptotic expansion, I2d(2a) ' ln(2a) + C
2 .

This expression differs from the above equation for Hc2 in a 3D system by
a number factor of the order ∼ .5.

For large interaction constant, ωD ∼ πTc, one can approximate LHS of
Eq.(7) with a linear function. The obtained critical field

~ωc2 (0) =
π3

4

λ2ω2D
µ

=
π3

4e2+C

³
λe1/λ

´2
~ωHW

c2 (9)

is much larger than it follows from HW theory. The upper critical field grows
quadratically with ωD. Therefore the condition ~ωc2 (0)¿ ωD restricts the
Debye cutoff as ωD

µ ¿ 4
π3λ2

. Using the expression for Tc in this limit one
can obtain that the ratio

~ωc2 (0)µ
(πTc)

2 =
4

π

is almost constant for different ωD. One should stress that to ensure the
quasi-classical condition ~ωc2 ¿ µ, the parameter ωD/µ should be small,
otherwise the system is described by the quantum limit discussed by Rasolt
and Tesanovic [15].

The temperature dependent corrections can be estimated using expan-
sion,

1

x sinh (x)
= 1 + 2Re

X
k=1

(−1)k
k

∞Z
0

due−uπk+ixu,

714



with a result

∞Z
0

dy

y2

 2πT√
µ~ωc

y

sinh
³

2πT√
µ~ωc

y
´ − 1

 e−y
2
Erfi (y)→ −1

3

(πT )2

µ~ωc
ln

µ √
µ~ωc

eC/2−C1π2T

¶
(10)

where

C1 =
12

π2

∞X
k=1

(−1)k
k2

ln k ' .123.

Thus the dependence ωc2 (T ) in the low temperature region, 2πT√
µ~ωc2

. 1,
and at large value of ωD is determined from relation

1

2
ln

µ
ωHW
c2

ωc

¶
=
4eC

3e2

µ
T

Tc

¶2 ωHW
c2

ωc
ln

Ã
e1+C1−C

2π

Tc
T

µ
ωc

ωHW
c2

¶1/2!
(11)

Retaining in RHS only the leading term in small parameter T
Tc
we can recover

the relation obtained by Gorkov [1]: ln
³
Hc2(0)
Hc2

´
= .64

³
T
Tc

´2
ln
¡
.27TcT

¢
. It is

interesting to note that the low temperature asymptotic as well as the high
temperature limit of the upper critical field do not depend on the interaction
constant (for a weak coupling). This universal character of Hc2(T )-curve
holds at ωD À πTc in all temperature diapason [2]. It is prominent that the
curvature of Hc2(T ) is negative.

In the small ωD limit we obtain similar dependence,

Hc2

Hc2 (0)
= 1− λ

π

6

µ
T

Tc

¶2
ln

µ
2eC1

π3/2eC/2
Tc
T

¶
, (12)

but with a factor proportional to the interaction constant. The numerical
solution to Eq. (2) shows that for λ . 1 the difference between above two
limits smoothly disappears already in a small vicinity above zero tempera-
ture. Thus, we conclude that strong energy independent electron-electron
coupling can not radically influence the Hc2(T )-dependence.

At very low temperature, 4π2T ¿ ~ωc, the discrete structure of the
energy spectrum becomes important and the contribution from other singu-
lar points corresponding to resonance pairing strongly increases. Choosing
τ1 → τ1 + 2πk, τ2 → τ2 + 2πk, where −τ0 ≤ τ1, τ2 ≤ τ0 and k = 1, 2...
numerates the lattice points on main diagonal, we readily calculate the sum
over k. The integrals over τ1, τ2 are evaluated similar to previous case lead-
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ing to

A
(q)
0 = D3d

2πT√
µ~ωc

νmaxX
ν=0

e−4πων

1− e−4πων

√
nF τ0Z

−√nF τ0

dy

|y|e
− 2ωνy√

nF
−y2

Erfi (|y|)

' π3/2D3d

µ
~ωc
µ

¶1/2
S1 (13)

In the integral the parameter eων can be set to zero since the contribution
from eων ∼ √nF is strongly suppressed by a small factor e−4π√nF' . Esti-
mating the sum,

S1 ≡
νmaxX
ν=0

e−4πων

1− e−4πων
,

over Matsubara frequencies we recover the result obtained by GG [12],

A
(q)
0 = π3/2D3d

µ
~ωc
µ

¶1/2 1
4π

µ
ln

µ
~ωc
2π2T

¶
+ C

¶
(14)

where it is assumed that ~ωc À 2π2T . The resonance pairing correction is
small by factor ∼ 1/√nF everywhere except for a limited low temperature
region where it is logarithmically diverged.

It is straightforward to estimate the oscillating terms of the SC free
energy. The problem is simplified due to factorization of integration and
Matsubara summation similar to previous case. Obtained results agree with
Ref.([12]) except for the contribution from singular points situated on the
axis (Fig. 1) which have not been taken in account in Ref.([12]). Without
further comments we present our calculations of the first harmonic contri-
bution to the SC free energy

A1 ' π1/2

4
D3d

µ
~ωc
µ

¶
cos (2πnF ) ln

~ωc
4π2T

(15)

Note only that it is smaller by factor 1/
√
nF with respect to zero harmonic.

Similar approach can be applied for more complex electron systems. We
have considered the electron density of states with a band energy spectrum
along z-direction, ε (kz) = t⊥ (1− cos (kzd)) , where d is the corresponding
lattice constant and t⊥ is the mini-band width, and spin-split LLs spectrum
with a spatially nonuniform order parameter along the field (Fulde-Ferrel-
Larkin-Ovchinnikov approach). In the first case the function Erfi(y) in Eq.
(4) should be modified to appropriative one, whereas in the second case the
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energy spectrum can be treated as a superposition of two independent LL
systems. In both cases a convex form of the Hc2(T )-curves have been ob-
tained. Such a result is rather obvious since in the quasi-classical limit many
LLs contribute to pairing making the fine structure of levels less important.

Figure 2: Model density of electron states composed from Landau levels
around Fermi surface and continuum at |ε− µ| > ωL.

To simulate an electron system with the level broadening depending on
energy we consider a model spectrum shown in Fig. 2. The spectrum is
separated in two parts. We assume that in some energy interval around the
Fermi surface, |ε− µ| ≤ ωL < ωD, LLs are well disentangled. For sake of
simplicity the width of levels from this part of the spectrum is chosen to be
zero. It should be stressed that it is easy to incorporate in the model the
levels with a constant width but such a modification do change qualitatively
our results. In contrast, LLs which are located beyond ωL, ωL ≤ |ε− µ| ≤
ωD, are assumed to be strongly overlapped due to some external potential
and form a continuum. The contribution to the pairing energy from the level
spectrum is described by Eq. (5) with ω1,2 = µ∓ ωL. The contribution of
continuum can be also described by Eq. (5) where ω2 = µ+ωD, ω1 = µ+ωL,
and magnetic field tends to zero. Here, we have used that the LL spectrum is
transformed to continuum in the zero magnetic field limit. Thus, the upper
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Figure 3: Upper critical field obtained for model density of states with λ = 1
and ωL/ωD = .5

critical field is determined from equation:

∞Z
0

dy

y2

³
2πT√
µ~ωc

y
´

sinh
³

2πT√
µ~ωc

y
´ 2
π
Si

µ
2ωL√
µ~ωc

y

¶
e−y

2
Erfi (y)+

∞Z
0

dy

sinh (y)

2

π

h
Si
³ωD
πT

y
´
− Si

³ωL
πT

y
´i
=
1

λ
, (16)

where the first term only depends on magnetic field.
It is easy to see that the contribution of the continuum increases with

temperature decrease. Such a variation can be considered as a variation of
effective interaction constant for the discrete part of the spectrum. This
effective interaction also increases with temperature decrease. As a result
the upper critical field grows more rapidly than it does for temperature in-
dependent interaction constant. Since without continuum Hc2(T ) is a linear
function at T → Tc it is clear that for a composite spectrum the upper
critical field will have a positive curvature just below Tc. At very low tem-
perature the contribution of continuum becomes temperature independent
so that Hc2(T ) has its standard WHH form. An example of the numerical
solution to Eq.(16) for λ = 1 and ωL/ωD = .5 is shown in Fig. 3. The
critical field has anomalous behavior up to .2Tc.

In summary we note that the anomalous upward dependence of the upper
critical field, Hc2(T ), at high temperature, T ∼ Tc, can be explained by
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washing out of LL structure of the electron energy spectrum far from Fermi
surface whereas at low temperature the concave form could arise due to the
resonance pairing contribution. In contrast, the spin-splitting of LLs and
the energy mini-band structure do not affect the classical form of Hc2(T )
curve.
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by the Academy of Sciences and Humanities, and by the fund from the
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