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Abstract
Shear displacements and a related electric field induced in an elastic

pipe via a film electrode cover are studied. The medium is a piezocrys-
tal of the 6mm symmetry class. The problem is analyzed with the dual
series equations involving trigonometric functions, which are reduced
to the Fredholm integral equations of the second kind. The suggested
algorithm is novel. This algorithm is efficient for solving the problem
concerning pipes of an arbitrary thickness. The leading terms of the
asymptotic expansions are found for a wide range of the actual para-
meters.

PACS: 46.25.Hf

This paper deals with an antiplane strain of an infinite pipe occupying
the region a ≤ r ≤ b, −π ≤ θ ≤ π, −∞ < z <∞.

The strain state is induced by the constant electric field between the thin
conductive films covering the inner surface of the pipe r = a, −π ≤ θ ≤ π,
−∞ < z < ∞ and the strip −α ≤ θ ≤ α, r = b, −∞ < z < ∞ on the
external surface (Fig. 1). The pipe material is a hexagonal crystal of the
6mm symmetry class (piezoceramics is polarized in the direction of the pipe
axis chosen as z axis). The contacts are supposed to be ideally flexible.

There is no source of reference for the treated problem known to the
author. The similar problem for a cylinder was studied in [1]. The technique
used there is not effective for a thin pipe.
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The state of the pipe is independent on the coordinate z. The electric
field in free space is described with the harmonic potential ϕ∗ (r, θ) . The
electric and elastic fields are determined by the electric potential ϕ (r, θ)
and the displacement uz (r, θ) , which obey the equations [1]

∇2v = 0 , ∇2ψ = 0, ∇2 = 1

r

∂

∂r

µ
r
∂

∂r

¶
+

∂2

∂θ2
, (1)

v = cE44uz + e15ϕ, ψ = e15uz− Ä11 ϕ,
where cE44 is the elastic constant, e15 is the piezoelectric constant and Ä11 is
the permittivity of the pipe material.

Figure 1: Geometry of the problem.

The nonzero components of the electric induction and shear stresses are
expressed via the potentials v (r, θ) and ψ (r, θ) :

Dr =
∂ψ

∂r
, Dθ =

1

r

∂ψ

∂θ
;

σθz =
1

r

∂v

∂θ
, σrz =

∂v

∂r
. (2)

The stresses on the surface of the pipe are absent:

∂v

∂r
|r=a= ∂v

∂r
|r=b= 0 , − π ≤ θ ≤ π,

which gives v (r, θ) = 0. This implies that the stresses are zero everywhere
in the pipe and the displacement, as well as the potential ψ (r, θ) , are pro-
portional to the electric potential ϕ (r, θ)

uz (r, θ) = −e15
cE44

ϕ (r, θ) , ψ (r, θ) = −e
2
15 + cE44 Ä11

cE44
ϕ (r, θ) . (3)
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The electric potential obeys the Laplace equation and satisfies the boundary
conditions:

ϕ (a, θ) = 0 , − π ≤ θ ≤ π; (4)

ϕ (b, θ) = ϕ∗ (b, θ) , − π ≤ θ ≤ π; (5)

ϕ (b, θ) = V0 , θ ∈ [−α,α] ; (6)

Dr (b, θ) = D∗r (b, θ) , θ /∈ [−α, α] , (7)

where D∗r = − Ä0 ∂ϕ∗
∂r is the radial component of the electric induction in

the free space and Ä0 is the permittivity of the free space.
Requiring the solution to be even, we seek it in the form

ϕ (r, θ) =
∞X

m=1

Xm
sinh

¡
m ln r

a

¢
m cosh

¡
m ln b

a

¢ cos (mθ) , (8)

ϕ∗ (r, θ) = D0 ln
r

b
+

∞X
m=1

Xm
tanh

¡
m ln b

a

¢
m

µ
b

r

¶m

cos (mθ) . (9)

These expansions satisfy the boundary conditions (4) and (5). Substitution
(8) - (9) into the conditions (6) and (7) leads to the dual series equations

∞X
m=1

Ym tanh (λm)
[1 +M (λm)]

m
cos (mθ) = (1 + γ)V0, 0 ≤ θ ≤ α; (10)

∞X
m=1

Ym cos (mθ) = D0, α < θ ≤ π; (11)

where γ =
¡
e215 + cE44 Ä11

¢
/cE44 Ä0,

¡
1 + γ−1

¢
ln b

a = λ,

Ym = Xm

·
γ + tanh

µ
m ln

b

a

¶¸
, (12)

M (λm) =
(γ + 1) tanh

³
γ
1+γλm

´
h
γ + tanh

³
γ
1+γλm

´i
tanh (λm)

− 1.

We differentiate the first equations and make a substitution θ = πt/2K,
where K = K (k) is the complete elliptic integral of the first kind and k is

defined by the equations πK
³√
1− k2

´
= λK (k) . Then the equations take

the form
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∞X
m=1

tanh (λm) [1 +M (λm)]Ym sin (µmt) = 0, 0 ≤ t ≤ β; (13)

∞X
m=1

Ym cos (µmt) = D0, β < t ≤ 2K. (14)

where µm = πm/2K and β = 2αK/π.
There is a number of methods reducing trigonometric dual series equa-

tions to equations of the second kind with completely continuous operators.
In the case of interest, these regular equations have a general shortcoming:
L2-norms of their operators tend to zero as λ → 0, so that equations are
ill-conditioned for small λ and may be unsuitable for mathematical interpre-
tation or numerical evaluation. We suggest here the method of reducing the
considered dual series equations to an equivalent Fredholm integral equation
of the second kind which is well-conditioned and efficiently solvable.

We introduce the functions Pnm
¡
x | k2¢ = Pnm (x) defined for 0 < k <

1 via the integral representation [2]

Pnm
¡
x | k2¢ = xZ

0

cn t
2 cos (µmt)q
cn2 t

2 − cn2 x
2

dt (15)

where 0 ≤ x ≤ 2K, K = K (k) is the complete elliptic integral of the first
kind, cnx = cn (x | k) is the Jacobian elliptic function [3, 4]. This definition
gives us the discontinuous sum

∞X
m=1

Pnm (x) cos (µmt) = −K
³
k sn

x

2

´
+

(
0 , t > x;

K cn t
2√

cn2 t
2
−cn2 x

2

, t < x.
(16)

Other integral representations can be derived from (15) by contour inte-
gration:

Pnm (x) = cosh (λm)

2KZ
0

dn t
2 cos (µmt)q

1− k2 sn2 x
2 sn

2 t
2

dt. (17)

Pnm (x) = coth (λm)

2KZ
x

cn t
2 sin (µmt)q
cn2 x

2 − cn2 t
2

dt, (18)
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where λ = πK (k0) /K (k) , snx = sn (x | k) and dnx = dn (x | k) are the
Jacobian elliptic functions [3].

Now we can write down the corresponding Fourier series:

∞X
m=1

tanh (λm)Pnm (x) sin (µmt) =

(
0 , t < x;

K cn t
2√

cn2 t
2
−cn2 x

2

, t > x;
(19)

and

∞X
m=1

1

cosh (λm)
Pnm (x) cos (µmt) = −K

³
k sn

x

2

´
+

Kdn t
2q

1− k2 sn2 x
2 sn

2 t
2

.

(20)
Another representation can be found by integrating by parts:

πm sn x
2 dn

x
2

2K cn x
2

Pnm (x) =
d

dx

xZ
0

sn t
2 dn

t
2 sin (µmt)q

cn2 t
2 − cn2 x

2

dt. (21)

We will seek a solution of the dual series equations (13)-(14) of the form

Ym = C

βZ
0

p (s)ω (s)Pnm (s) ds+ Cp (β)Pnm (β) , m = 1, 2, .. , (22)

where ω (s) is an unknown function, p (s) =
p
sn s

2 dn
s
2/ cn

s
2 and C is an

undetermined constant.
Substituting (22) into the first equation (13) and using the discontinuous

sum (16), we get

tZ
0

p (x)ω (x) dxq
cn2 x

2 − cn2 t
2

= −
βZ
0

ω (s)U (t, s) ds− U (t, β) ,

K cn
t

2
U (t, s) = p (s)

∞X
m=1

tanh (λm)M (λm)Pnm (s) sin (µmt) .(23)

We note that this equation may be considered as the Abel equation for
ω (x) . Upon inverting the Abel equation and exploiting the formula (21),
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we find

(I+H)ω (x) = −H (x, β) , 0 ≤ x ≤ β; (24)

Hω (x) =

βZ
0

ω (s)H (x, s) ds,

H (x, s) =
p (x) p (s)

2K2

∞X
m=1

m tanh (λm)M (λm)Pnm (s)Pnm (x) ,

(25)

We easily see from the representation (15) that Pnm (x) is a continuous func-
tion for x ∈ [0, 2K] . This indicates that the equation (24) is the Fredholm
integral equation of the second kind with a symmetric continuous kernel and
continuous right part.

We substitute (22) into (14) and interchange the order of summation
and integration. The sum (16) leads to the relation

D0

C
= −

βZ
0

p (s)K
³
k sn

s

2

´
ω (s) ds− p (β)K

µ
k sn

β

2

¶
, (26)

connecting the constants D0 and C. The constant C is established by sub-
stituting (22) into the first equation (10) and setting t = 0

C =
(1 + γ)V0

βR
0

[F (s) +G (s)]ω (s) ds+ F (β) +G (β)

,

F (s) = p (s)
∞X

m=1

tanh (λm)

m
M (λm)Pnm (s) ,

G (s) = p (s)
∞X

m=1

tanh (λm)

m
Pnm (s) .

The sum F (s) converges rapidly. The slowly convergent sum G (s) can
be transformed into the integral by inserting the integral representation
(18) and interchanging the order of operations. Utilizing the sum of the
trigonometrical series [3]

∞X
m=1

sin (mx)

m
=

π − x

2
, 0 ≤ x ≤ 2π,
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we obtain

G (s) =
πp (s)

4

2KZ
s

(2K− t) cn t
2q

cn2 s
2 − cn2 t

2

dt.

We see that the treated problem is reduced to the Fredholm integral
equation of the second kind (24). Our studying this integral equation is
based on the orthogonality of the functions p (x)Pnm (x) . The starting point
is the observation that the integral representation (21) may be considered
as a solution of the Abel integral equation

m

2K

tZ
0

p2 (x)Pnm (x) dxq
cn2 x

2 − cn2 t
2

=
sin (µmt)

cn t
2

. (27)

We multiply this relation by 1
K cn

t
2 sin

πmt
2K and integrate with respect to t

between 0 and 2K. Interchanging the order of integration coupled with (18)
gives

m tanh (λm)

2K2

2KZ
0

p2 (x)Pnm (x)Pnl (x) dx = δml , (28)

where δml is the Kronecker delta.
The system Pnm (x) , m = 1, 2, .., is proven to be complete [2]. The

corresponding Parseval formula is

1

2K2

2KZ
0

p2 (x) f2 (x) dx =
∞X

m=1

m tanh (λm) f2m ,

fm =

2KZ
0

p2 (x) f (x)Pnm (x) dx.

We define the scalar product of the functions f (x) and g (x) as

(f (x) , g (x)) =
1

2K2

βZ
0

p2 (x) f (x) g (x) dx.
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The following estimates are obtained by means of the Parseval formula

((I+H)ω,ω) =
∞X

m=1

m tanh (λm) [1 +M (λm)]ω2m

≥ min [1 +M (λm)] (ω, ω) ,

kI+Hk = sup
((I+H)ω,ω)

(ω, ω)
≤ max [1 +M (λm)] .

Thus operator I+H is positive defined and hence the Fredholm integral
equation has unique solution. Since 0.75 < 1 +M (u) ≤ 1 for γ > 0, u ≥ 0,
the equation is well-conditioned and can be solved by numerical methods.
Convergence of the iterative methods is provided by the estimate

kHk = sup (Hω, ω)

(ω, ω)
≤ max |M (λm)| < 0.25.

This upper estimate rapidly decreases with growing γ and if γ ≥ 100, then
kHk < 0.0025. In the case of actual materials, the situation is much better.
For example, we have:
- for the piezoceramics PZT-4 [1]: γ = 1348.1644, kHk < 2.52 ∗ 10−4,
- for the piezoceramics PZT 65/35 [5]: γ = 458.188, kHk < 7.41 ∗ 10−4.
An effective solution can by derived by expanding the solution into the

series with respect to the small parameter1/γ as λ¿ γ. The leading asymp-
totic terms are

D0 = − γV0
G0 (α)

K

µ
k sn

Kα

π

¶
,

Xm =
1

γ
Ym =

V0
G0 (α)

Pnm

µ
2Kα

π

¶
,

G0 (α) =
K2

π

πZ
α

(π − t) cn Kt
πq

cn2 Kα
π − cn2 Kt

π

dt.

The asymptotic form of the electric potential in free space is

ϕ∗ (r, θ) = D0 ln
r

b
+

V0
G0 (α)

∞X
m=1

tanh (mλ)

m

µ
b

r

¶m

Pnm

µ
2Kα

π

¶
cos (mθ) .

Substituting the integral representation (18), we obtain after interchanging
the order of summation and integration

ϕ∗ (r, θ) =
V0K

πG0 (α)

πZ
α

£
h
¡
θ − t, br

¢
+ h

¡
θ + t, br

¢¤
cn Kt

πq
cn2 Kt

π − cn2 Kα
π

dt+D0 ln
b

r
, (29)
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where

h (v, u) =
∞X

m=1

um

m
sin (mv) = arctan

u sin (v)

1− u cos (v)
.

The leading asymptotic term of the potential ϕ (r, θ) can be written
in the integral form by substituting the integral representation (15) and
utilizing the trigonometric series for am (u) = arcsin (snu) [3]

am (u) =
πu

2K
+ 2

∞X
m=1

exp (−mλ) sin (πmu/K)

m (1 + exp (−2mλ))
,

Re (λ) > Im (πu/K) .

Finally, we find

ϕ (r, θ) = −c
E
44

e15
uz (r, θ) (30)

=
D0
γK

ln
r

a
+

V0K

πG0 (α)
Im

αZ
−α

am
£
K
π

¡
θ − t+ i ln r

a

¢¤
cn Kt

πq
cn2 Kt

π − cn2 Kα
π

dt.

(31)

Let us write down the formulas for the charge density on electrodes. It
follows from (19) that for the outer electrode

q (θ, b) = D∗r (b, θ)−Dr (b, θ) =
Ä0
b

" ∞X
m=1

Ym cos (mθ)−D0

#
(32)

=
Ä0 γV0K cn Kα

π

bG0 (α)
q
cn2 Kθ

π − cn2 Kα
π

, − α ≤ θ ≤ α. (33)

The capacity of this electrode is

Cb = −2π Ä0
V0

D0 =
2π Ä0 γ
G0 (α)

K

µ
k sn

Kα

π

¶
. (34)

For the inner electrode, we obtain by utilizing the series (20) the following
distribution of the charge density

a

Ä0
q (θ, a) =

a

Ä0
Dr (a, θ) =

∞X
m=1

Xm

cosh (λm)
cos (mθ)

=
γV0Kdn

Kθ
π

G0 (α)
q
1− k2 sn2 Kα

π sn2 Kθ
π

+D0 (35)
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with the total charge equal to zero.
The expression for the component Dθ at the external pipe surface has

also a very simple form

Dθ (b, θ) =
Ä0 γV0K sign (θ) cn Kθ

π

bG0 (α)
q
cn2 Kα

π − cn2 Kθ
π

, α < |θ| ≤ π. (36)

In conclusion, we analyze electric and elastic fields induced by film elec-
trodes which cover the surfaces of a piezoceramic pipe polarized in its axis
direction. A novel technique for solving the arising integral equations is
suggested to derive simple asymptotic formulas.
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