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Abstract

The existence of magnetic domains in non-ferromagnetic metals at
quantizing magnetic fields is examined under conditions of de Haas-
van Alphen oscillations in the range of strong magnetic fields and low
temperatures in thin slabs for a three-dimensional electron gas. Dy-
namics of Condon domain walls are studied in bulk metals and films at
time-independent and time-varying applied magnetic fields. Domain
wall resonance and relaxation effects are considered. The influence of
temperature, magnetic field, impurities and sample size on the width,
velocity and mobility of domain walls is calculated. Magnons of a non-
spin nature are defined and discussed. It is shown that the magnetic
induction splitting in the sample due to the existence of the domain
stripe structure changes the distribution of magnetic field in vacuum
above the surface of the sample. Detection of these changes by Hall
probes can give information about spatial configuration of the Condom
domain structure.

PACS: 71.10 Ca; 71.70 Di
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1 Introduction

Oscillations of thermodynamic quantities in an external magnetic field are
the result of the oscillations of the density of states caused by the magnetic
field quantization of the energy levels (Landau quantization) [1]. Many
properties of electron gas in normal metals are periodic functions of mag-
netic fields as successive Landau levels sweep through the Fermi level due
to an increase of the external magnetic field — for instance, oscillations of
magnetization (de Haas-van Alphen effect- dHvA) [1]. The magnetic field
changes the density of states and, consequently, the internal energy of the
electron gas. Thus, when χB = ∂M/∂B > 1/4π (M is the oscillatory part
of the magnetization, B is the magnetic induction), the “realignment” of
the density of states, connected with the change of magnetic induction B
occurring during the stratification into phases, becomes energetically “con-
venient”, and results in formation of Condon domains [1, 2]. This instability,
caused by strong correlation of conduction electrons, is known as diamag-
netic phase transition (DPT) [2]. The transformation occurs in each cycle
of dHvA oscillations when the reduced amplitude of oscillations approaches
unity [1]. A series of phase transitions takes place at discrete values of the
external magnetic field Hex. The reason for this collective effect is that
an electron is subject to the magnetic induction B instead of the magnetic
field H (the Shoenberg effect) [1]. Thus, an applied magnetic field Hex of
a few Tesla may “magnetize” non-magnetic metals in the sense of the ap-
pearance of magnetic domains. Condon domains were predicted by Condon
in Ref. [3] and discovered in silver (Ag) by means of nuclear magnetic res-
onance (NMR) [4] and in beryllium (Be) and white tin (Sn) by means of
muon spin-rotation spectroscopy (µSR) [5—9]. Domain formation at DPT
was studied theoretically in [2, 3, and 10—20]. The DPT in the single-domain
case for three-dimensional (3D) metals was described in [21—23]. The tem-
perature dependence of the magnetic induction bifurcation due to the Con-
don domains was satisfactory reproduced in quasi-two-dimensional (2D) [24]
and 3D metals [25]. It was shown that the temperature dependence of the
magnetic induction bifurcation due to the Condon domains has a universal
character and does not depend on the dimensionality of electron gas. The
latter circumstance confirms the long-range nature of magnetic interactions
between orbital magnetic moments of conduction electrons in metals under
high (quantizing) magnetic fields [26], and evidences in favour of using the
mean-field approach for the description of DPT.

Condon domains in a 3D electron gas are the only type of magnetic
domains, for which the dynamics of domain walls (DW) has not been con-
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sidered so far. However, for a 2D electron gas the oscillations of Condon
DW were considered in [19] by analogy with ferromagnets. The motivation
for the investigation of the DW dynamics of Condon domains is driven by
interest in understanding the characteristic magnetic lengths of the system,
deriving from the domain dynamics, and their comparison with parame-
ters calculated from the static properties. The DW motion is determined
by the fundamental nature of the magnetic material. Both theoretical and
experimental investigations of the domain dynamics will give the charac-
teristic sizes of domains and DW, and hence clarify the underlying physics
of magnetic ordering phenomena under conditions of magnetic oscillations.
Consequently, the dynamics of Condon DW should be studied as an addi-
tional tool for the investigation of the phenomenon.

Ordered states, such as Condon domains, should exhibit several kinds
of dynamics: magnetization density waves (or magnons of a non-spin na-
ture) [10] and DW motion. In weak magnetic fields the wall-displacement
processes of ferromagnetic domains [27] govern the magnetization changes.
The Condon DW should have a characteristic frequency of oscillations, so far
unknown in 3Dmetals. Consequently, there should be a resonance dispersion
of magnetic susceptibility, caused by wall displacement processes. Numerous
observations have detected the above resonance behaviour in ferromagnets
and ferroelectrics [28—31] and have furnished experimental evidence of the
existence of DW mass. Thus, two types of domain dynamics experiments
have been done, which provide the most part of the basis for the theoret-
ical picture of DW motion [28, 31]. Small-motion or susceptibility studies
mentioned above, are the first type, and large-motion or velocity versus ap-
plied field, are the second. The latter process is DW motion, which leads to
reorientation or switching of the magnetization in domains, induced by an
applied magnetic field. The above research of Condon domains dynamics
deals with bulk metals.

The problem of the DW dynamics in thin films remains open and merits
investigation as well. It would be useful to examine the dynamics of DW in
3D metals, where Condon domains have been detected experimentally. The
dynamics of the interphase boundaries at first-order DPT was theoretically
considered in [12] and [16]. It would be a mistake to identify the two types
of the boundary motion, namely the interphase boundary and DW motion.
We shall discuss this problem in Sect. 3.

The goal of this research of the Condon domain phase and DPT is the
description of the dynamics of Condon DWs of the two above-mentioned
types. To the best of our knowledge, all the theoretical and experimental
studies of DPT and Condon domains have been focused on large samples,
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and all the phenomena have been investigated on a macroscopic scale. Some
static mesoscopic properties of metals undergoing DPT or containing Con-
don domains have been studied in [32].

In this paper we present a mean-field theory elaboration considering the
bulk and size-dependent static and dynamic effects in the Condon domain
phase. In a more general aspect the Condon “magnetism” has been recently
surveyed in [33].

The paper is organized as follows. Section 1 is an introduction. Section 2
deals with the model of Lifshitz-Kosevich-Shoenberg including the Landau-
type expansion of the thermodynamic potential density in the bulk and
slab cases. Section 3 concerns the overdamped motion of DWs and the
inertia effect on the DW motion. Section 4 refers to the finite-size effect on
the motion of DW. Section 5 is devoted to DW resonance and relaxation.
Section 6 discusses non-spin magnons. In Section 7 we concentrate on phase
diagrams and dynamics of DW in gold (Au). In Section 8 we consider the
stripe domain structure and calculate the periodic (along the normal to the
DW plane) magnetic splitting due to Condon domains on the surface of
the sample as a function of the distance between the surface and a possible
position of the Hall probe in air. The measurements by means of Hall
probe will provide us with the characteristic magnetic size, the domain size,
and can be used for domain mapping on the sample of that surface. In
this section a method for the velocity and mobility measurement of DWs is
discussed. Section 9 is conclusions. Section 10 contains acknowledgements.

2 Model

The oscillator part of the thermodynamic potential density can be written
neglecting all harmonics in the Lifschitz-Kosevich formula, but one, in the
first harmonic approximation [1, 34]:

Ω =
1

4πk2

·
a cos (b) +

1

2
a2(1− n) sin2 (b)

¸
, (1)

H is the magnetic field inside the material

b = k(B −H) = k [hex + 4π (1− n)M ] ,

k =
2πF

H2
, F is the fundamental oscillation frequency, hex = Hex−H, is the

small increment of the magnetic field H and the external magnetic field Hex,
n is the demagnetization factor; all the components of vectors are taken along
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the direction of the magnetic induction. In the first harmonic approximation
the magnetization is found from the implicit equation of state [1]:

4πkM = a sin [k (hex + 4π (1− n)M)] , (2)

a is the reduced amplitude of oscillations: a = 4πkA = 4π (∂M/∂B)B=H
[1], A is the first harmonic amplitude. If the magnetic interaction is strong
enough, a state of lower thermodynamic potential can be achieved over
part of an oscillation cycle by the sample breaking up into domains, for
which the local value of magnetization alternates in sign from one domain
to another. In the vicinity of the DPT temperature (found from the equation
a(Tc,H) = 1) we can present the thermodynamic potential per unit volume
as an expansion in powers of magnetization:

Ω = 2π (1− a)M2 +
8

3
π3k2M4. (3)

Accordingly, we arrived at the Landau-type thermodynamic potential
density [21]:

Ω = −A
2
M2 +

B

4
M4, (4)

where A = 4π(a− 1), B = (32/3)π3k2. In the case of the breaking up into
domains, these equations are valid over the range of domain existence in the
dHvA cycle. According to [34], the temperature and field dependence of the
amplitude is

a (T,H) = a0 (H)
λT

sinh (λT )
exp [ −λ (H)TD] , (5)

λ ≡ 2π
2kBmcc

e~H
, mc is the cyclotron mass. The limiting amplitude a0 (H) ≡

a (λT → 0,H) is the combination of temperature-independent factors in the
Lifschitz-Kosevich formula [34] - a0 = (Hm/H)

3/2, kB is the Boltzmann
constant, e is the absolute value of the electron charge, c is the light velocity,
~ is the Planck constant, TD is the Dingle temperature andHm is the limiting
field above which DPT does not occur at any temperature (it depends on the
shape of the Fermi surface — see details in [15]). To construct temperature-
magnetic field phase diagrams giving the range of the appearance of DPT
[15] we use, henceforward, the implicit equation for the DPT temperature,
putting (5) equals unity at the phase transition. At a < 1 (T > Tc) the
homogeneous phase exists with zero magnetization. At a > 1 (T < Tc) the
“magnetic”, ordered phase appears with non-zero magnetization. The phase
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transition of the second order with the well-defined transition temperature
Tc takes place only at discrete values of magnetic induction. The envelope of
these points serves as the DPT boundary. The left wing of the bell-shaped
phase diagram corresponds to comparatively low magnetic fields: λTc >> 1,
the right side corresponds to comparatively high magnetic fields λTc << 1.
In the first case the DPT temperature in a slab, Ts, is given by [32]:

Ts = Tc

"
1− 34/3

22/3λTc

³rc
L

´2/3#
, (6)

where rc is the cyclotron radius and L is the slab thickness. Here Tc is the
bulk DPT temperature. Based on the approach used in [32], one can derive
Ts for high magnetic fields, λTc << 1,

Ts = Tc

"
1− 37/3

22/3 (λTc)
2

³rc
L

´2/3#
. (7)

The question of what the bulk is, should be answered here, depending on
the value of the second term in the brackets. If its contribution is negligible
compared with unity, the phase transition temperature is size-independent,
and the properties of the sample are considered as the bulk ones. In the
opposite case the slab properties differ from those of the bulk sample. The
size dependence of the DPT temperature in the slab is the strongest in
Eq. (7), since, in contrast to Eq. (6), the second term in the brackets
is comparable to unity, provided the factors λTc and rc/L are small. The
cyclotron radius is always much smaller than the slab thickness, and the
condition λTc << 1 is fulfilled at high magnetic fields corresponding to the
right side of the T−H bulk phase diagram. Then suppression of the ordered
state is more easily realized in the case of (7) than in the case of (6). Using
(7) and putting Ts = 0, we get that the sample reaches the minimal value
of thickness Lmin: Lmin =

27
√
3

2 rc (λTc)
−3 .

Therefore, the size dependence of the A - coefficient is related to DPT
point shift to lower temperatures at small sizes. The size, at which the
magnetic ordering becomes unstable, is the critical size. Accordingly, at the
critical sizes, a balance among the volume, surface and gradient energies
determines a characteristic phase transition point (Ts < Tc), i.e. a new
phase transition point, instead of the original bulk phase transition point
Tc. Beyond this transition temperature the ordered phase will be suppressed
in the sample with the dimensions less than the critical sizes. This process
is analogous to the classical homogeneous nucleation process, where the
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condensed phase nuclei are not stable unless the radii of the condensed
phase nuclei are larger than a specific critical size.

3 Dynamics of domain walls

3.1 Overdamped motion

Eq. (3) is valid in the centre of the period of magnetic oscillations (h = 0).
This means that the sample is in the centre of the oscillation cycle, so that
the up and down domains are equally wide. In the case of stationary motion
of the DW acted upon by an “external force”, an external magnetic field h
removes the equivalence of the states to the right and left of the DW. When
h 6= 0 and it varies, the energy balance is altered and rearrangements of
the domain structure take place, mainly through the motion of DWs. Wall
motion is the dominant magnetization mechanism. The DW will move in
such a way that the volume of energetically favourable domains increases at
the expense of energetically unfavourable ones. Thus, we consider the forced
motion of the DW under the driving force h. Taking into account the decli-
nation from the centre of the period of oscillations and the energy of DWs,
we should add the following two terms to thermodynamic potential density
(4): −hM + K

2 (∂M/∂x)
2, where K =

rc
4
is the inhomogeneity coefficient.

Using the time-dependent Ginzburg-Landau equation
∂M

∂t
= −Γ ∂Ω

∂M
for

the overdamped motion of DWs, we obtain the following equation:

∂M

∂t
= Γ(K

∂2M

∂x2
+AM −BM3 + h), (8)

Γ is the Landau-Khalatnikov transport coefficient. By using the time-
dependent Ginzburg-Landau equation we say that the local rate of displace-
ment of the order parameter is linearly proportional to the local thermo-
dynamic force presented by the functional derivative of the thermodynamic
potential density.The constant of proportionality, the kinetic coefficient Γ,
is the response coefficient, which defines a time scale for the system. There-
fore, we suppose that the DW dynamics has a relaxational character. This
approach was used for the description of motion of interphase boundaries at
the first-order DPT under temperature changes [12]. However, we also apply
it to the motion of DWs. One of the reasons for its application was actually
shown in [16]. Close to the first-order phase transition the so-called wetting
of a DW occurs: the DW splits into two interphase boundaries between
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the homogeneous phase and the ”domain-up” and ”domain-down”, respec-
tively. The shape of the interphase boundary coincides with that obtained
in [12]. By ”domain-up” and ”domain-down” we understand two values of
magnetization of opposite directions. This is the wetting of the DW by the
homogeneous phase. The change from non-wetting to wetting behaviour
occurs under well-defined conditions corresponding to attaining thermody-
namic coexistence of the phase involved. The wetting of an interface by a
solid phase may occur, when it becomes energetically favourable to insert a
thin layer of a new phase at the interface. This condition can often be met
when two phases are unstable, as in the vicinity of a critical or a triple point
at first-order phase transitions. Comparison of the interphase boundary
profile [16] with that obtained in [12] shows that the interphase boundaries
formed by the wetting are kink-solitons of the time-dependent Ginzburg-
Landau equation describing the interphase boundary between each of the
two domains and the homogeneous phase. Since the interphase boundary
and the domain boundary appear in the framework of this approach, we also
use it here for DW motion induced by magnetic field.

Passing to the moving frame, s = x — vt, where v is the velocity in the
direction x, we obtain

K
d2M

ds2
+ (v/Γ)

dM

ds
+AM −BM3 + ah = 0. (9)

The solution of Eq.(9) corresponding to the DW boundary conditions is
known [35]

M (s) =M2 +
M1 −M2

1 + exp (s/∆)
. (10)

M1,M2 and M3 are the roots of the equation BM3 −AM − ah = 0 :

M1 =
1
kπ

¡
a−1
2a

¢1/2
cos
¡ϕ
3

¢
,

M2 =
1
kπ

¡
a−1
2a

¢1/2
cos
¡π−ϕ

3

¢
,

M3 =
1
kπ

¡
a−1
2a

¢1/2
cos
¡π+ϕ

3

¢
,

ϕ = arccos
³

h
hm

´
,

hm =
1
3k [2 (a− 1)]3/2.

(11)

M1 and M2 are the magnetization values in two domains corresponding to
the two minima of the thermodynamic potential density (4) in an applied
magnetic field, whileM3 is the saddle point of the thermodynamic potential
density. The solution (10) is a kink-soliton corresponding to a large ampli-
tude disturbance connecting two magnetization states by a single DW. At
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hm the magnetization has only one direction. Thus, the kink solution (10)
describes the profile of the DW. The width ∆ of this moving DW is equal to

∆ =
rc
4

1

[2π (a− 1)]1/2 . (12)

Its velocity is given by

v = (6π)1/2 Γrc (a− 1)1/2 cos
µ
π + ϕ

3

¶
. (13)

For h << hm

v = (6π)1/2 Γrc (a− 1)1/2 sin
µ

h

3hm

¶
(14)

or, replacing the sine in (14) by its argument and using (11), we obtain

v =
(3π)1/2 Γrckh

2 (a− 1) . (15)

Since h is small compared to the applied field inducing magnetic oscilla-
tions, we can, thus, justify the considered shape of the DW. The plane wall
approximation is valid for small applied fields, where a small curvature lets
to balance the forces tending to bend the DW.

Since the DWs do not move until the acting field nearly reaches a thresh-
old magnetic field, below which the DW is pinned and above which the
DW moves forward, the velocity in (15) is proportional to the excess mag-
netic field. This linear dependence is expected in the mean-field theory.
The depinning threshold may be treated as a dynamic phase transition and
analysed as a critical phenomenon.

The mobility of Condon DW µ can be determined as follow [36]:

µ = lim
h→0

[ν (h) /h] . (16)

Hence,

µ =

√
3πΓrck

2 (a− 1) . (17)
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3.2 Inertial effect

DW resonances have not been subjected to any experimental investigations
for Condon domains in the 3D electron gas. However, the existence of the
DW mass can hardly be excluded from general arguments. To describe the
rapid, non-overdamped, movement of the DW, the inertia term is added.
It should include a product of the inertial factor m and the second time

derivative of the magnetization
∂2M

∂t2
. Then, in the moving frame the first

term in the left side of Eq.(9) transforms into K −mv2. In this case the
DW width is given by

∆ =
rc
4

1©
2π (a− 1) £1 + 24πmΓ2 (a− 1) cos2 ¡π+ϕ3 ¢¤ª1/2 . (18)

The influence of the inertial effect is determined by the dimensionless
factor mΓ2. Both factors, m and Γ, are parameters of the theory and should
be extracted from the analysis of the system based on experiments. The
connection between the inertial factor and the DW mass will be found in
Section 7. When m = 0, Eq.(18) coincides with Eq.(12). The velocity of the
DW is then given by

v =

√
6πΓrc (a− 1)

1
2 cos

¡π+ϕ
3

¢£
1 + 24πmΓ2 (a− 1) cos2 ¡π+ϕ3 ¢¤1/2 . (19)

Analogously, Eq. (19) transforms into (13), when m = 0. In case of
h << hm, Eqs. (18) and (19) give the expressions for the DW width

∆ =
rc

4 [2π (a− 1)]1/2
1h

1 + 3πΓ2mk2h2

(a−1)2
i1/2 , (20)

and for the DW velocity

v =

√
3πΓrckh

2 (a− 1)
1h

1 + 3πΓ2mk2h2

(a−1)2
i1/2 . (21)

If mΓ2 << 1, the inertial effect seems to be negligible. If mΓ2 >> 1,
the inertial effect is substantial. The factor (kh)2 is changed in the interval
0.01 − 1 for reasonable values of temperature and magnetic field, and its
influence on the dynamics of DWs is smaller than the influence of the factor
mΓ2. Eq. (21) exhibits critical temperature dependence in the overdamped
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limit. The field dependence of the velocity of DWs (21) coincides with the
one derived in [36] for the fast motion of DWs in ferromagnets. It is seen
from (20) that the DW width narrows when the inertial factor increases.

Comparing (21) with the equation for the velocity of DWs measured in
ferromagnets [35]

v =
µhh

1 + (µh/vm)
2
i1/2 , (22)

where vm is the limiting velocity of the DW, we obtain a very simple formula:
vm = (K/m)1/2. Thus, the limiting velocity vm is determined by the ratio
of the inhomogeneity and inertia coefficients. The limiting velocity is the
velocity of the domain motion when the second term in the brackets in (21)
and (22) is much larger than unity. It depends on temperature, magnetic
field and the sample size and will be estimated in Section 7. The limiting
velocity is derived in the absence of dissipation. In the second limiting case
of the overdamped DW motion m = 0 and v = µh. It should be noted that
the field mobility is unaffected by the inertial term. Eqs. (12), (18) and
(20) are presented for v << vm, otherwise the DW thickness decreases likeh
1− (ν/νm)2

i1/2
with the velocity increase.

4 Dynamics of domain walls and size-dependent
effects

The results of Section 3 are valid for infinite samples. It is clear that sample
sizes should be taken into account. Let us to consider a slab of infinite planar
extent (Lx, Ly →∞) and of finite thickness Lz. We take into account the
layer-like domain structure with a phase transition of the second order in
the case of an 1800 DW. We examine this sample geometry because all
the direct measurements of Condon domains [3-9] were made for plate-like
samples, when two dimensions of the specimen were much larger than its
thickness. Using the results of Section 2, one can obtain equations for the
dynamics of DWs in a slab of finite thickness.

The slab under consideration is a 3D spatial system, being infinite in
two dimensions and confined in its thickness. Since the mean-field critical
exponents obtained in the framework of Landau theory are not sensitive to
the details of the microscopic system, they are universal [27]. Thus, the
critical exponents calculated in the infinite sample are the same in the slab.
This means that the size-finite renormalization of the reduced amplitude of
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magnetic oscillations occurs as a result of the crossover from the bulk to the
slab: a → ã, where ã is the reduced amplitude of dHvA oscillations taking
into account the finite-size effect on the slab. Then, the width of the DW
in the case of the overdamped motion is

∆ =
rc
4

1

[2π (ã− 1)]1/2 . (23)

Close to the phase transition temperature, where

(ã− 1) =
µ
∂a

∂T

¶
T=Ts

(Ts − T ) , (24)

we obtain µ
∂a

∂T

¶
T=Ts

=
λ2Ts
3

, λTs << 1,µ
∂a

∂T

¶
T=Ts

= λ, λTs >> 1,

Ts = Tc

"
1−

µ
Lmin
L

¶2/3#
.

(25)

At thick slabs ã = a, and the bulk properties, therefore, take place:
Ts = Tc.

v = (6π)1/2 Γrc (ã− 1)1/2 cos
µ
π + ϕ

3

¶
. (26)

For h << hm the velocity is as follows:

v = (6π)1/2 Γrc (ã− 1)1/2 sin
µ

h

3hm

¶
, (27)

or replacing sin
µ

h

3hm

¶
by its argument

h

3hm
, we obtain:

v =
(3π)1/2 Γrckh

2 (ã− 1) . (28)

Eqs. (26) — (28) include the dependence of the velocity on the slab thick-
ness L and, thus, describe the size-dependent dynamics of DWs in the over-
damped motion.
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5 Domain wall resonance and relaxation

We have considered large-motion, or the velocity versus applied field dy-
namics of Condon DWs. The second type of the dynamics of Condon DWs
is a so-called small-motion case or oscillations of DWs in the presence of a
small time-varying magnetic field. We consider this effect in the 3D case,
while oscillations of Condon DWs in the 2D electron gas were studied in
[19] by analogy with ferromagnets. It is convenient to analyse this subject
by proceeding to a simple equation of motion for a 1800 wall [28, 29]. The
small-amplitude periodic motion of unit area of such a DW in an applied
field is determined, as is that of a simple harmonic oscillator, by its effective
mass mw, viscous damping coefficient γ, and stiffness coefficient α. The
pressure on the wall is 2M0H, whereM0 is the magnetization in the domain
and H is the applied field parallel to the direction of magnetization. We
may write, therefore,

mw
d2x

dt2
+ γ

dx

dt
+ αx = 2M0H, (29)

as the equation of motion of unit area of a 1800 DW for small displacements
x from equilibrium. The viscous damping parameter γ measures the en-
ergy losses according to the motion of the DW. It is difficult to calculate
the kinetic coefficient γ, since the damping mechanism is not completely
clear. Eddy current damping of DW motion in magnetic metals is usually
large, but the motion is also damped by magnetic relaxation mechanisms.
Experimental evidence of the existence of DW mass was obtained in many
materials [28, 29].

The presence of the DW mass leads to a DW resonance. A characteristic
frequency of DW oscillations should be observed by measuring magnetic
susceptibility caused by the wall-displacement processes. Solving Eq. (29)
for the case of an alternative magnetic field H = H0 exp(iωt), where ω is
the frequency, we obtain the expression for susceptibility χ caused by the
DW displacement [28, 29]

χ (ω) =
χ0

1−
³

ω
ω0

´2
+ iω

γ/mw

, (30)

where χ0 is the susceptibility at ω = 0 given by

χ0 =
3 (a− 1)
2π2k2Dα

, (31)
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D is the domain width. The frequency of the DW resonance [29] (of Condon
domains) is given by

ω0 =

µ
α

mw

¶1/2
. (32)

As it is known [1], 4πχ0 = a. Then

ω0 =
1

k

·
6 (a− 1)
πDamw

¸1/2
. (33)

Taking into account the size-dependent effect, we obtain

ω0 =
1

k

·
6 (ã− 1)
πDamw

¸1/2
. (34)

Let us estimate this frequency under conditions of the experiment [4] in
Ag: H = 9T, T = 1.4K, a = 2.6, mw = 4.7 · 10−11g·cm−2 (see below details
of the calculation of mw) using Eqs. (31) and (32). In this case the resonant
frequency is: ω0 = 1.2·107 sec−1 corresponding to the real frequency of about
2MHz. The NMR frequency in Ag, at which the domains were observed, was
equal to 18MHz [4]. The calculated resonant frequency may be, therefore,
observable since the screening due to the skin effect occurs, so that the skin
layer is much larger than the domain width.

At high amplitudes of impulse fields the wall motion becomes irreversible
and the stiffness becomes independent of the wall position, i.e. the inertial
and stiffness terms in (29) are negligible. Thus, γv = 2M0h in this case.
Comparing this equation to Eq. (15) we obtain the equation giving the
relation between Γ and γ:

Γ =
2 (a− 1)3/2
π3/2k2rcγ

. (35)

This limiting case corresponds, therefore, to the strongly damped case.
The motion of the DW in metals may be overdamped, since eddy currents
weaken inertial effects. The value of mw/γ may be taken, for example, from
magnetic-resonance experiments. It is usually derived from the resonance
linewidth [29]. Using Eq. (35) we can present the expression for mobility as
follows:

µ =
[3 (a− 1)]1/2

πkγ
. (36)
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In [37] the damping coefficient γ is calculated, provided eddy currents are
the dominant mechanism of damping. In terms of our model this coefficient
is given by:

γ =
16AD

πBρc2
, (37)

where ρ is the resistivity. For the data of the NMR experiment in Ag [4],
using ρ = 10−12Ω·m at helium temperatures for the residual resistivity ratio
10000, typical for pure silver samples [38], we obtain γ = 1.2 · 10−2g·cm−2 ·
sec−1. Inserting the calculated damping into (36) we obtain the value of
mobility 150 cm· sec−1 ·G−1. The mobility is sensitive to the sample purity
especially through the resistivity. Using the data of [4] we get v ≈ 15m/ sec.
This value shows an order of magnitude of the DW velocity in silver by us-
ing the given resistivity and the experimental data of [4]. According to (36)
and (37), the mobility tends to zero on approaching the phase transition
temperature. This behaviour is characteristic of the eddy current nature of
damping. In the case of the relaxation mechanism of damping the mobil-
ity strongly increases when the sample reaches the DPT temperature. This
follows from (17). Such a substantial difference between the critical temper-
ature dependence of the mobility of DWs in the two cases enables to clarify
the role of different mechanisms of damping in the DW motion.

In our model the relation between the inertia factor and the DW mass
is given by

mw =
1

16π2k2
m
(a− 1)
∆

. (38)

Eq. (38) is the result of calculations of the kinetic energy density

1

2
m

Z µ
∂M

∂t

¶2
dx =

1

32
m
(a− 1)
π2k2∆

v2, (39)

which is equal to 1
2mwv

2. The calculation of (38) and (39) is based on the
calculation of the difference between the energy of the moving DW and the
energy of the DW at rest, which is equal to 1

2mwv
2.

The limiting velocity of the Condon DW vm under conditions of the
experiment [4] in Ag can be estimated by using vm = (K/m)

1/2(see Section
IV): vm= 100m/sec. In calculations of the resonant frequency and the DW
mass, mw is taken as 4.7 · 10−11g/cm2. This value is calculated following
the known consideration of the domain wall inertia in conducting media [39]
based on the data of the NMR experiment [4]. In our case the calculation,
made according to [39], gives the following result:
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mw =
πD3A

3Bρ2c4
. (40)

The relaxation time τ = γ/α is the time, with which the DW responds
to changes of the external “force” 2M0h. If the DW response to the applied
field is rapid, the inertial effects are negligible. At frequencies low enough
compared to the DW resonant frequency, the motion of the DW is a simple
relaxation process with the real and imaginary parts of the susceptibility

χ0 (ω) = χ0
1

1 + (ωτ)2
, (41)

χ00 (ω) = χ0
ωτ

1 + (ωτ)2
. (42)

The calculation of ω0τ gives 4π−2
√
3a. This expression is distinct from

that derived in [19] for a 2D electron gas -
p
3/4π- and includes the reduced

amplitude of dHvA oscillations a depending on temperature, magnetic field
and size sample for a thin specimen. Based on the data [4], one can ob-
tain ω0τ ∝ 1. The response type is therefore unclear. However, increasing
the reduced amplitude may lead to ω0τ >> 1 and provide the resonance
response. In the opposite case ω0τ << 1, which also may be reached by
changing temperature and magnetic field, the eddy currents pattern appear
to move along as though it was attached to the moving DW. Thus, the iner-
tial effect is negligible, and the DW motion is overdamped. For this reason,
the consideration in Section 3 is valid. In a sense, the relaxational character
of the DW response is supported by the analysis of the helicon resonance in
Al under conditions of the Condon domains appearance [40]. The softening
of the helicon has been shown in [40] to happen owing to the occurrence
of Condon domains. The growth of the helicon damping has been found
related to the relaxational dynamics of DPTs [40]. It cannot be explained
by the eddy currents induced by helicons. The characteristic helicon fre-
quencies in [41] are several hundreds of Hz. From the data presented in [42],
the frequency that makes oscillations of DWs possible is about 1MHz. It is
much larger than the helicon frequency. This means that DW motion will
not occur at least at frequencies smaller than 1MHz. This conclusion is clear
from the conditions of the experiment, in which the wavelengths of the heli-
cons are much larger than the domain width. Consequently, the damping of
helicons observed in [41] is not caused by eddy currents induced by motion
of the DWs in the oscillating field of helicons. The similar calculation of the
frequency of oscillations of DWs in Be was made in [42]. The authors showed
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that in Be DW motion will not occur until 20MHz. The similar result was
actually observed in [4] in Ag, where the Larmor frequency, 18MHz, did not
cause domain motion. The analysis of the helicon damping in Al showed a
strong temperature increase exhibiting critical slowing down in the electron
relaxation time [40]. This characterizes the overdamped dynamics of mag-
netically interacting electrons in Al. The response of the DWs apparently
reflects the response of the collectivized electrons determining the Shoenberg
effect. In Al it should evidently be of a relaxational type. However, this fact
does not necessarily lead to conclusions about the relaxational dynamics of
DW in other metals in which Condon domains occur. A generalized conclu-
sion on the type of dynamics of DWs is not evident. The type of dynamics
of DWs remains an open problem requiring further clarification.

6 Non-spin magnons

In each magnetic system divided into domains there are two ground state
patterns of magnetization: small oscillation motions of magnetization in one
domain and DWs displacements where magnetization flips from one domain
to another. Thus, in addition to kink-soliton localized modes, as DWs,
which are large amplitude solutions of the equation of motion (8), linear
small amplitude, extended magnons should exist in the system. Magnons
of this non-spin origin have not been considered so far. One can derive the
dispersion relation for the orbital magnons in the following manner.

The equation of motion for the magnetization is

m
∂2M

∂t2
+AM +BM3 −K

∂2M

∂x2
= 0. (43)

In the small-amplitude limit, the plane waves

M =M0 sin (qx− ωqt+ θ) (44)

are the solution to Eq. (43), where θ is the phase, with the dispersion
relation

ω2q =
|A|
m
+ v2mq

2 (45)

Here q is the wave number and vm = (K/m)1/2is the phase velocity.
Eq. (45) gives a magnon mode, which presents small amplitude oscillations
about ground state value M0. These excitations given by Eq. (45) are
magnons [45], but not spin waves. The dispersion relation is different from
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that for the “classic” magnons [29] with its quadratic dependence on the
wave number, but coincides with the dispersion law for magnons in so-
called weak ferromagnets [36]. The rare-earth orthoferrites are an example
of weak ferromagnets, in which the spontaneous magnetization is small and
the energy associated with the demagnetizing fields is significantly lower
than the characteristic energy of the other relativistic interactions, e.g., the
magnetic anisotropy energy. The first term in the right-side of Eq. (45)
has the meaning of magnon activation. Substituting the expression for A =
4π (a− 1) (see Eq. (4)) into Eq. (45), we have

ω2q =
4π |a− 1|

m
+ v2mq

2. (46)

Let us estimate the gap frequency in (45), (46), i.e. the activation frequency.
Using the magnetic field and temperature values for the Ag sample in [4],
we calculate the reduced amplitude of quantum oscillations and the wave
number-independent part of the frequency. It is approximately equal to
5 ·108 sec−1. It corresponds approximately to the real frequency of 100MHz.
The gap frequency lowers as the temperature or magnetic field changes lead
to the phase transition temperature exhibiting the soft-mode type behaviour:
ω (q = 0) ∝ |a− 1|1/2. At the field and the Dingle temperature used in [4]
we obtain the frequency ω ≈ 10MHz at T = 2.47K.

Eq. (43) has an additional solution of the hyperbolic tangent spatial
profile, which is the DW pattern [43]. The excitation energy, required to
produce this pattern, is localized in the DW. This kind of excitation is quite
the opposite of magnon excitations, where the energy is distributed through-
out the sample. It is apparent [44] that magnons are extended and DWs are
localized. For h << hm the profile of the moving DW at Γ = 0 becomes
h/2A+(A/B)1/2 tanh ((x− νt) /2∆) instead of (A/B)1/2 tanh (x/2∆) . This
result is evident since the DW shape is preserved at low fields.

7 Magnetization reorientation in gold

To construct the T −H phase diagrams in Au we put a = 1 in (5) and plot
the dependence of T on H [25].

The curves in Fig. 1 form the locus of points of DPT for different Dingle
temperatures (from 0K to 1K), reflecting the degree of purity of the sam-
ple in Au: outside the bell-shape curve the homogeneous phase takes place,
while the ordered phase is located inside the bell. The interphase curves
separate the two phases. The range of existence of the ordered phase de-
creases with increasing the Dingle temperature. As we stated in Section 2,
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the region of high magnetic fields in the phase diagram exhibits a more
pronounced size-dependent effect. In this range of fields the bulk phase
transition temperature is given by [22]

Tc =
[6 (a0 exp (−λTD)− 1)]1/2

λ
. (47)

Thus, in this case the largest shift of the phase transition temperature
should take place.

Figure 1: DPT diagrams in Au for different Dingle temperatures. The curve
1 denotes TD = 0K, 2 — 0.25K, 3 —0.5K, 4 — 0.75K, 5 — 1K.

In Fig. 2 the DPT temperature in the slab Ts (H) is shown as a function
of the magnetic field value at zero Dingle temperature for different values of
the slab thickness from 1µm to 8µm in Au. For constructing the plot, Eqs.
(5), (6) and (7) are used. It is seen that the DPT temperature decreases with
increasing the magnetic field value. The growth in the Dingle temperature
leads to decreasing the phase transition temperature. The analytic results
are obtained in two cases: comparatively low magnetic fields (6) and com-
paratively high magnetic fields (7). As it follows from this figure, the results
are “sewn” and are seen to form the common bells-like phase diagram, also
giving information about the range of parameter λTc ∝ 1.
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Figure 2: DPT temperature Ts (H) in the slab as a function of the mag-
netic field at TD = 0.25K in two cases: the left wing describes the region
of comparatively low fields in the bulk phase diagram (λTc >> 1, where
Tc is the bulk DPT temperature), the right wing describes the region of
comparatively high fields in the bulk phase diagram (λTc << 1), at dif-
ferent values of the slab thickness from 1µm to 8µm in Au. The data in
the two ranges are “sewn” and form the common bells-like phase diagram,
also giving information about the range of intermediate values of parameter
λTc ∝ 1.

In Fig. 3 the DPT temperature Ts (L) in the slab is presented as a func-
tion of the slab thickness for different Dingle temperatures from 0K to 0.5K
in the region of high magnetic fields in Au. Eq. (7) is used for the plot con-
struction. The graph is the phase diagram for a confined sample. Under the
curves the range of the ordered phase is located for each Dingle temperature.
The homogeneous phase is situated above and left of the curves. It is seen
that the DPT temperature in the slab decreases with decrease of the slab
thickness, reaching zero at a definite thickness. This minimum thickness
Lmin depends on the magnetic field and the Dingle temperature. The graph
is plotted for high magnetic fields of the bulk phase diagram. Depending on
the Dingle temperature, the DPT temperature in the slab reaches the bulk
DPT temperature, starting from the slab thickness approximately equal to
100µm. Above this limiting value the sample properties are the bulk ones.

692



Figure 3: DPT temperature, Ts (L), in the slab as a function of the slab
thickness L. The DPT temperature is given at three different Dingle tem-
peratures from 0K to 0.5K in the region of high magnetic fields in Au: 1 —
0K, 2 — 0.25K, 3 — 0.5K . For plotting the graph we used H = 35T.

Figure 4: Magnetic field dependence of the minimal slab thickness Lmin(H),
in the case of strong magnetic fields and five different Dingle temperatures
from 0K to 1K in Au: 1 — 0K, 2 — 0.25K, 3 — 0.5K, 4 — 0.75K, 5 — 1K.
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Below this thickness the crossover occurs from the bulk size-independent
properties to the finite-size ones.

In Fig. 4 the magnetic field dependence of the minimal slab thickness
Lmin is presented in the case of strong magnetic fields at different Dingle
temperatures from 0K to 1K in Au. It increases with increasing of magnetic
field. We use Eqs. (5) and (7) for the graph construction.

Figure 5: DWs mobility µ as a function of temperature T at H = 35T and
different Dingle temperatures from 0K to 0.75K in Au: 1 — 0K, 2 — 0.25K,
3 — 0.5K, 4 — 0.75K. Mobility is given in units of

√
3/ (πkγ).

In Fig. 5 the DWs mobility µ is shown as a function of temperature
at the magnetic field 35T and different Dingle temperatures from 0K to
0.75K in Au for bulk sample. Mobility is given in units of

√
3
±
(πkγ). Eqs.

(36), (24) and (25) are used for the calculation. The mobility increases
as the temperature is lowered. It tends to zero at the DPT temperature,
exhibiting the critical temperature dependence. The effect of critical slowing
down takes place in the DW mobility.

In Fig. 6 the mobility µ is presented as a function of the slab thickness
L at the value of magnetic field 35T, temperature 1K and different Dingle
temperatures in Au. It is given in units of

√
3/ (πkγ). Eqs. (36), (24) and

(25) are used for the calculation. Mobility decreases with decrease in the
slab thickness tending to zero at the minimal thickness.
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Figure 6: DWs mobility µ as a function of the slab thickness L at the
magnetic field H = 35T , temperature T = 1K and different Dingle temper-
atures in Au: 1 — 0K, 2 — 0.25K, 3 — 0.5K. The mobility is given in units of√
3/ (πkγ).

In Fig. 7 the h−dependence of the DWs velocity v(h) is presented in
units of the mobility µ in Au at the value of magnetic field 10T and temper-
ature 1K for two Dingle temperatures: 0K — 1, 0.25K — 2, with the account
of DW inertia. The velocity is given in units of h/hm. Eqs. (19) and (11) are
used for the calculation. Increase in the inertial effect leads to the change
in the curvature of the graph indicating a tendency towards saturation in
strong magnetic fields upon field increase. The curve shown in this figure
is characteristic of inertia-response type systems. It is plotted at the values
of magnetic field for which inertial effects are strong enough in comparing
with damping resulting in saturation of the velocity with the field increase.
The curves end when the reorientation is complete and the magnetization
has only one direction. It is seen that the deterioration of sample purity, re-
flected in growth of the Dingle temperature, reduces the range of the domain
existence, cutting the region of the allowed fields, at which the two-domain
region takes place.
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Figure 7: DWs velocity v in units of maximum velocity vm as a function of
the decrement of the magnetic field h (the deviation from the period centre
of oscillations) at the magnetic field H = 10T, temperature T = 1K and two
Dingle temperature: 1 — 0K, 2 — 0.25K , in Au in the case of inertial effects.
The field h is measured in units of hm. vm is the limiting DWs velocity.

Since the temperature dependence of the resonant frequency coincides
with that of mobility, the temperature and size curves of the frequency in
relative units are similar to those presented in Figs. 5 and 6.

In Fig. 8 the magnon frequency ω is shown as a function of temperature
T at the magnetic field 35T and different Dingle temperatures from 0K to
0.75K in Au. Frequency is given in units of ω0 = (|A|/m)1/2. The frequency
increases as the temperature is lowered. It tends to zero at the DPT tem-
perature exhibiting the critical temperature dependence of the soft mode
type. In contrast to the known mode softening occurring at structural and
ferroelectric phase transitions, for which the soft mode frequency decreases
according to (Tc − T )1/2, in this case the magnon softening exhibits the tem-
perature dependence (a− 1)1/2. The latter formula is of a mean-field type:
the order parameter is proportional to (a− 1)1/2, approaching zero when
the reduced amplitude a tends to unity. This bifurcation behaviour was
detected in the domain phase in Be [6]. This temperature dependence of
the frequency splitting in the domain phase in Be and Ag may evidence in
favour of the soft mode appearance by analogy with the temperature behav-
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Figure 8: Magnon frequency ω as a function of temperature at the magnetic
field 35T and different Dingle temperatures from 0K to 0.75K in Au: 1 —
0K, 2 — 0.25K, 3 — 0.5K, 4 — 0.75K. Frequency is given in units of ω0.

ior of the frequency spectrum at structural, ferroelectric and ferromagnetic
second-order phase transitions [26]. In the case of a continuous symme-
try group, the low-frequency collective excitations, so-called soft modes, are
present. In isotropic magnets spin magnon modes soften as temperature
approaches the phase transition temperature from below.

In Fig. 9 the magnon frequency ω is presented as a function of the
slab thickness L at different Dingle temperatures at the magnetic field 35T
and temperature 1K in Au (Eqs. (46) and (7)). It is given in units of
ω0 =

p|A|/m. Frequency decreases with the decrease in the slab thickness,
tending to zero at the minimal thickness. It is seen that the deterioration
of sample purity, reflected in growth of the Dingle temperature, reduces the
range of the domain existence, cutting the region of the allowed fields at
which the two-domain region takes place.

The dispersion relation for the magnons of a non-spin origin is, there-
fore, obtained. At DPTs in bulk metals and confined metallic samples, the
magnons softening with changing of temperature takes place.
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Figure 9: Magnon frequency, ω as a function of the slab thickness L at the
magnetic field 35T, temperature 1K and different Dingle temperatures in
Au: 1 — 0K, 2 — 0.25K, 3 — 0.5K. Frequency is given in units of ω0.

8 Mapping of Condon domains

Magnetic domains in non-ferromagnetic metals, Condon domains, are of
non-spin nature and present a rare example of the system, in which domain
and domain wall sizes have not been measured so far. The knowledge of
characteristic magnetic lengths could enable us to understand better the
physics underlying this sort of instability of a 3D electron gas in normal
metals. We have known only two characteristic dimensions of the system,
i.e. the cyclotron radius rc and the critical sample size Lc for the DPT
existence (Lc is the film thickness, below which the order parameter of the
DPT, i.e. the magnetization in each domain, is zero, see Fig. 9). For Ag we
have calculated recently this critical size in [43], and for Au in the present
paper. Thereby, we have shown that the Condon domain phase becomes
unstable as the sample thickness L decreases. It occurs in the mesoscopic
range. The non-uniform phase transforms to the uniform one at the critical
size Lc. Hence, the phase transition temperature becomes zero at a finite
value of the film thickness. It has been proven that the known theory of
DPT is a limiting case of the finite-size theory [43]. However, the spatial
domain structure, and especially the sizes of domains and DWs, as well as
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the correlation length, determining the type of the ordering under study,
have been unknown. Detection of the magnetic and correlation lengths
of the system would enable us to gain an improved understanding of the
spatial configuration of the Condon domain structure and to perform its
imaging and mapping. The use of Hall probes, which are a very sensitive
instrument for measuring magnetic fields, could shed light on the problem
of the driving forces governing the onset of DPTs, and extract information
on the characteristic range of these forces.

The main idea of the experiment on measurements of the characteris-
tic magnetic lengths is based on the calculation of the magnetic induction
splitting due to Condon domains on a surface of the sample as a function of
the distance between the surface and a possible position of the Hall probe
in air.

As it is known [1], the macroscopic characteristic magnetic lengths (do-
main and DW sizes) in the dHvA oscillations are governed by the considera-
tions very similar to those in other domain situations. The last circumstance
essentially simplifies these calculations. It should be noted that Condon do-
mains, forming in the sample bulk, come to the specimen surface. In this
sense, the situation in non-magnetic metals differs from ferromagnet samples
on the surface of which, the closure domains usually appear, disturbing to
find the bulk distribution of the domain structure, but resembles the picture
of domain formation in the intermediate state in superconductors.

Let us consider the periodic stripe domain structure in a plate-like sample
with the domain period 2D << L, where L is the width of the plate (see,
for example, [28, 44]). We assume that the surface of a crystal is parallel to
the x− y plane at z = 0, the external magnetic field H is parallel to z-axis
and the domains with magnetization M along the +z or −z direction are
separated by DWs lying parallel to the y−z plane. For simplicity we assume
that all domains have the same width D and the DWs are geometric ones,
so that the DW width ∆ << D. The DWs are parallel to H, and we can
neglect the contribution of magnetostatic energy at the boundaries between
domains in comparing with the magnetostatic energy of the domains [1].
We characterise the given domain structure by magnetic induction splitting
∆B = B1 − B2 = 8πM , where B1 and B2 are magnetic inductions in two
adjacent Condon domains.

We calculate the spatial distribution of magnetic field above the sample
z > 0 due to periodic (along the y-axis) induction splitting ∆B with the
period 2D inside of the sample z ≤ 0. The standard procedure based on
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Maxwell’s equations in magnetostatic approximation [44]

div B = 0, curl H =0, (48)

and boundary conditions, e.g., continuity of normal component of magnetic
induction and continuity of tangential component of magnetic field, which
in our case acquire the form

Bz

¡
y, z = 0−

¢
= Bz

¡
y, z = 0+

¢
(49)

Hy

¡
y, z = 0−

¢
= Hy

¡
y, z = 0−

¢
,

and enables us to obtain the following distribution of magnetic field above
the surface of the sample (z ≥ 0)

Hn = Hext +
1

π
∆B arctan

cos (πy/D)

sinh (πz/D)
(50)

Ht =
1

π
∆BArcth

sin (πy/D)

cosh (πz/D)
(51)

where y is the direction parallel to the surface and perpendicular to the
stripe domain structure, z is the direction normal to the surface, Hext is the
applied magnetic field, Hn is the field component normal to the surface, Ht

is the tangential field component. The formulas (50)-(51) include the charac-
teristic magnetic size, e.g. the domain size D. The graphical representations
of Hz (50) and Hy (51) components of magnetic field to the surface of the
sample are given in Figs. 10-13. To plot the figures we used the reduced
values for components of magnetic field δhn = (2/π) (Hn −Hext) /∆B,
δht = (2/π) (Ht/∆B) and co-ordinates y=y/2D and z=z/2D, respectively.

It follows from Eqs. (50)- (51) that the magnetic field close to the surface
of the sample gives a map of the domains on the surface. Thus, the measure-
ments of a magnetic field in several points outside the sample will give us the
characteristic magnetic lengths of the system, and provide the deeper insight
into underlying physics of magnetic ordering phenomena under conditions
of magnetic oscillations.

The method of Hall probes may be effective for measurements of the
dynamics of DWs, in particular useful for the measurement of their velocity
and mobility. The main idea is as follows. When an applied magnetic field
is perpendicular to the surface of the sample, the domains with preferable
orientation start to grow, and those with unfavourable orientation start
undergo narrowing. This effectively causes DWs to move, and eventually one
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Figure 10: y-dependence of the reduced normal component of magnetic field
δhn at four different distances from the surface of the sample: 1 — z=0.01,
2 — z=0.1, 3 — z=0.2, 4 — z=0.3.

Figure 11: z-dependence of the reduced normal component of magnetic field
δhn at five different point on the surface of the sample: 1 — y=0, 2 — y=0.2,
3 — y=0.25, 4 — y=0.3, 5 — y=0.5.
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Figure 12: y-dependence of the reduced tangential component of magnetic
field δht at two different distances from the surface of the sample: 1 — z=0.1,
2 — z=0.2.

Figure 13: z-dependence of the reduced tangential component of magnetic
field δht at four different points on the surface of the sample: 1 — y=0.25, 2
— y=0.4, 3 — y=0.6, 4 — z=0.75.
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can get right underneath of the Hall probe. As the DW passes underneath
the Hall probe, it changes the average magnetic field in the sensor area. Since
the distance between different Hall probes is known and the passing time
may be recorded, the velocity of DWs and their mobility can be measured
by using Hall probes.

9 Conclusions

The finite-size effect on the DPT temperature is considered in high quan-
tizing magnetic fields in a slab. Critical slab thickness, below which the
magnetic ordering disappears, is found. The shift of the phase transition
temperature towards lower temperatures is shown to be especially sensitive
to the sample thickness in high magnetic fields corresponding to the right
wing of the T −H phase diagram.

Two types of DWs dynamic behaviour are studied. Large-motion, or
velocity versus applied field, is the first type. Small-motion of DWs near
the equilibrium state, exhibited in the dynamic susceptibility, is the second
type. The overdamped motion of DWs is considered in the bulk and thin
film cases. The inertia effect on the wall motion is also examined in the two
cases. The mobility of DWs is derived and estimated. The characteristic
frequency of DW oscillations under the alternative magnetic field application
is calculated.

The dispersion relation for magnons of a non-spin origin is obtained.
Temperature and sample size softening of the magnon mode of an orbital
nature is considered in quantizing magnetic fields under conditions of the
strong de Haas-van Alphen effect in bulk metals and confined metallic sam-
ples.

The distributions of magnetic field above the surface of the sample due to
the inductance splitting in stripe domain structure are calculated. The pos-
sibility of Condon domain mapping and measuring of velocity and mobility
of their walls is discussed.

We are indebted to I.D. Vagner, V. Egorov, R. Kramer, and I. Sheikin
for useful discussions. We express our deep gratitude to P. Wyder for his
interest in this work and his permanent inspiring influence on this field of
research. One of us (A.G.) thanks the Center for Computational Mathe-
matics and Scientific Computation of the University of Haifa for support.
Some parts of this paper are reprinted with permissions from [A. Gordon,
N. Logoboy, W. Joss, Phys. Rev. B 69, 174417 (2004). Copyright (2004)
by the American Physical Society] and from [A. Gordon, N. Logoboy, and
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W. Joss, Solid State Comm. 130, 131 (2004). Copyright (2004) by Elsevier
Science Publishing House].
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