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Abstract

The paper, not pretending for a complete and detailed review, is in-
tended mainly for a wide community of physicists, not only specialists
in this particular subject. The author gives a physical picture of the pe-
riodic emergence of instabilities and well-known diamagnetic domains
(Condon domains) in metals resulting from the strong de Haas-van
Alphen effect. The most significant experiments on observation and
study of the domain state in metals are described. In particular, the
recent achievements in this area using muon spin rotation µ, as well as
the amazing phenomenon of “supersoftness” observed in the magne-
tostriction experiments, are presented. Novel, not previously discussed
features of the phenomenon related to the metal compressibility are en-
lightened.
The paper is based on lectures given by the author at École Doc-

torale de Physique (graduate school of physics) in Grenoble (France)
during a stay with Institut National Polytechnique de Grenoble.

PACS: 75.45.+j; 71.70.Di; 75.60.d

Actually, the title contains no contradiction. The term “non-magnetic”
is to emphasize the absence of a connection between the phenomena to be
discussed and the magnetic moments of atoms causing such well known mag-
netic phenomena as para- ferro- and antiferromagnetism, magnetic domains,
etc. We will deal with simple metals with a zero atomic magnetic moment
where unrestricted motion of conduction or free electrons is the only source
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of magnetism. The motion of free electrons in a magnetic field is known to
be circular, due to the Lorentz force; the projection of electron trajectory
onto a plane normal to the magnetic field, forms a closed Larmor orbit, and
this orbital, diamagnetic motion (since the sign of Larmor orbit magnetic
moment is always negative) causes a peculiar magnetization of a metal with
formation of diamagnetic domains. Its peculiarity consists in the fact that
this magnetization, known as the de Haas — van Alphen (dHvA) effect, oc-
curs in all metals but only at very low temperature, very high uniformity
of a fairly strong magnetic field, and very high quality of a metallic single
crystal. Moreover, for observation of diamagnetic domains, first predicted
by J.H. Condon [1], all these conditions become more severe.

At first glance, the above contains some hidden contradiction. Indeed,
the Larmor orbit is diamagnetic at any temperature so that the lower is the
magnetic field, the higher is its negative magnetic moment, while the field
uniformity seems to be irrelevant at all. On the other hand, the magnetic
field only bends the trajectory of an electron, not changing its energy. From
this classical point of view, if the electron energy does not change in the
magnetic field, it is senseless to magnetize only increasing the energy in vain.
It is just the case, and the contradiction with negative magnetic moments of
Larmor orbits has a very simple explanation. The case is that simultaneously
with the high diamagnetic moment caused by electron rotation in the bulk
of metal, some part of electrons, which are closer to the metal surface than
the Larmor diameter, can no longer form a closed orbit, running into the
surface. These electrons, bouncing from the surface, move on average in
the opposite direction yielding a positive magnetic moment, and create a
paramagnetic effect, exactly compensating the diamagnetism of all internal
electrons. We will try to demonstrate this result in a simplest way.

Let us consider a plane containing electrons with the surface density N
rotating in a magnetic field along the circular orbits of the radius R = v /ω.
Here vis the constant velocity of electrons and ω is the cyclotron frequency.
We cut now a square of the size a>>R. The total diamagnetic moment of
all electrons in the square is

M_ = 1/cNa2JoSo.

Here c is the light velocity, Jo = ωe/2π is the current of one electron on the
Larmor orbit, So = πR2 is the orbit are. Thus we have

M_ = 1/2cNa2ωeR2.

The compensating paramagnetic moment is the result of electron’s moving
along edge cutting orbits. All orbits, that have a distance y between their
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Figure 1: Cutting of Larmor orbits at the sample edge. Here, R is the
Larmor orbit radius, y is the distance from orbit centers to the sample edge,
L is the length of charge transfer for a given orbit along the edge.

center and the cutting line |y| < R (see Fig. 1), are cut and hence the
number of cutting circles n is

n = 4a2RN = 8NaR.

The average value Lav of the shift L(y) we find (see Fig. 2) as

Lav =
1

2R

Z −R

R
L(y)dy.

Figure 2: More detailed picture of a cutting orbit.
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Replacing y = Rcosα, dy = Rsin αdα and L(y) = 2R sin α, we obtain

Lav =
1

2R

Z π

0
2R2 sin2 αdα = R

Z π

0
sin2 αdα.

On the interval (0,π)Z π

O
sin2 αdα ≡

Z π

0
cos2 αdα, so that Lav =

πR

2
.

Figure 3: Two symmetrical orbits with the same L, situated “inside” and
“outside” of a sample.

We find now the average velocity of electrons along the edge va by com-
bining the two cutting orbits of length α and 2π−α (see Fig. 3). They both
have the same value of shift L and whole time of moving on them is exactly
the period T = 2π/ω. So, the velocity v=2L/T and the average velocity is

vav = 2Lav/T = ωR/2.

Thus, an average electron turns around the whole edge for the time t∗ =
4a/vav=8a/ωR and the current of one electron is e/t∗ = eωR/8a. Now we
have to remember that the number of cutting circles is n and every circle
before cutting contains only one electron. Of course, the electron after
cutting can find itself either inside or outside cutting line. Since the number
of electrons is very high, the probability for electron to put itself inside the
cutting line, i.e., in our square, is exactly one half. So, we have the number
of skipping electrons exactly n/2, the whole paramagnetic current is
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I+ =
ne

2t∗
=
1

2
NeωR2,

M+ = 1/2cNa2eωR2,

and
M+ =M_.

Therefore, non-magnetic materials should remain completely non-magne-
tic. It was, however, found long ago that a number of them, particularly
bismuth, graphite, and some other, demonstrate a noticeable diamagnetism.
It means that in those metals magnetic field can by some means increase
the electron energy. But how can it be done?

L.D. Landau was the first who considered this problem from the quan-
tum, or wave, mechanical point of view. From this point, a free moving
particle can be associated with some fixed wavelength λ (de Broglie wave-
length) inversely proportional to the particle momentum. It is clear that for
a free particle motion, λ, as well as the particle momentum and energy, can
by, in general, arbitrary. However, if the motion is confined by a so-called
potential box, then, roughly speaking, an integer number of wavelengths
must be kept within a box. This means that λ can no longer be an ar-
bitrary, continuously varying parameter. Respectively, the particle energy
can also change only by fixed portions, quanta. Of course, a piece of metal
also represents a potential box for conduction electrons moving in it but its
dimensions are, as a rule, so large that none of the electrons can cross it for
its “free life”, or relaxation time τ , which is the period between collisions
with defects or impurities, inevitably present even in a very pure metal. For
this reason, we can for sure neglect the size quantization. At the same time,
the size of a Larmor orbit, inversely proportional to the magnetic field, is, as
a rule, essentially less than dimensions of a real metallic sample, so that the
probability of impurity or defect scattering at this orbit in a good sample
is fairly low, especially in high magnetic fields. In other words, in this case
the relaxation time τ is much more than the period of Larmor orbit 2π/ω,
i.e. ωτ À 1, and the electron motion at this orbit can be considered as a
closed, finite one.

This approach brought L.D. Landau in 1930 [2] to the idea of equidistant,
the so-called Landau levels. In the standard electron energy vs momentum
dependence

E =
1

2m
p2 =

1

2m
(p2x + p2y + p2z),
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the energy is a continuous function of any projection of the momentum ð.
In the magnetic field H, it can be presented in the form

E =
1

2m
(p2⊥ + p2q ),

where p⊥ and pq are, respectively, normal and parallel projections of the mo-
mentum ð on the magnetic field direction. Instead of it, Landau obtained
a principally new result:

E =

µ
n+

1

2

¶
~ω +

1

2m
p2q .

Here n is an integer acquiring the values 0, 1, 2, . . . up to a some maximal
one, ~ is the Planck’s constant divided by 2π, ω = eH/mc is the cyclotron
frequency, that is the frequency of electron rotation in a magnetic field, m
is the electron mass, and c is the light velocity. In this case, the energy
of electrons moving along closed orbits in the plane perpendicular to the
magnetic field directions, can no longer change continuously. It changes by
fixed portions, quanta, which magnitude ~ω is proportional to the magnetic
field strength. It is essential that the minimal electron energy begins not
from zero but ~ω/2. At the same time, electron motion along the magnetic
field remains unchanged.

Landau showed that the total energy of such quantized electron gas
exceeds its classical value by a correction proportional to H2, resulting in
a negative magnetization, linear in magnetic field, and thus explaining the
diamagnetism of free electrons. Besides this result, Landau found that for
the magnetic field values large enough compared with the temperature, i.e. if

~ω À kT (1)

(k is the Boltzmann constant), the field dependence of magnetic moments
becomes essentially non-linear. The magnetic moment vs field dependence
acquires a “fast periodicity”, or magnetization oscillations. In essence, it was
a prediction of a new phenomenon. Unfortunately, at that time no ideas exist
of a great variety of the Fermi surface shapes and sizes in metals, and the
free electron model Landau based on, yielded extremely high requirements to
the magnitude and uniformity of magnetic field, practically unachievable at
that time, and he expressed a doubt concerning feasibility of experimental
observation of this effect. Nevertheless, field oscillations of the magnetic
moment with the period inversely proportional to the magnetic field, were
soon discovered in bismuth by de Haas and van Alphen [3] and got the name
of de Haas - van Alphen (dHvA) effect.
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Later, the dHvA effect was observed in other metals as well but the
oscillations were seen only in high quality single crystals and at very low
temperatures. The oscillation amplitude dropped fast even at small tem-
perature increase. The period of oscillations appeared to vary widely in
different metals with the difference reaching several orders of magnitude.
In some metals several periods were observed almost simultaneously (see
Fig. 4), and the value of periods depended, as a rule, on the crystal orien-
tation related to the magnetic field direction. It is not surprised that for a
rather long time the magnetization oscillations were not directly associated
with the Landau’s prediction.

Figure 4: Example of dHvA oscillations with two frequencies in inverse
magnetic field. The small period is about 10 times smaller than big one.

Such a versatility of experimental results managed to be understood only
later, on the base of the LAKP (I.M. Lifshits, M.Ya. Azbel, M.I. Kaganov,
V.G. Peschanskii) theory describing versatility of the Fermi surface shapes
and sizes. In 1952 L. Onsager demonstrated first [4] that the constant pe-
riod of magnetization oscillations as a function of inverse magnetic field, is
inversely proportional to the area A of extremal cross-section of the Fermi
surface by a plane perpendicular to the magnetic field direction (see Fig. 5).
The bigger is the area A, the “faster” the magnetization oscillates. For
instance, the dHvA from a Fermi surface like the dumbbell with two cross-
sections is shown on Fig. 4. The inverse period — magnetic frequency — is
given by the Onsager relation

F =
c~A
2πe

.
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Eventually, in 1955, I.M. Lifshits and A.M. Kosevich [5] developed the theory
of metal magnetization (LK-theory). The authors advanced much further
than Landau, obtaining a result adequate for any metal with arbitrary Fermi
surface at arbitrary temperature, which, for the free electron model, natu-
rally coincided with that of Landau. However, only due to the LK theory
it became clear why the Landau diamagnetism might me anomalously large
in several and why it is practically independent of temperature.

Figure 5: Different shapes of Fermi surfaces (schematically): spherical, long
ellipsoid, dumbbell. The extremal belt is shown. The wider is a belt, the
stronge is an oscillating contribution in energy and, consequently, dHvA
amplitude.

Progress in theory served as a kind of impact for an unprecedented
growth in the number of experimental investigations of metals in magnetic
field at low temperature [6]. The measurements of magnetization oscilla-
tions have become one of the basic methods to study Fermi surface. During
one decade, an enormous number of works was done and for all or almost all
metals, at least those for which high quality single crystals could be grown,
Fermi surfaces were “decoded”. And just here we are eventually approach-
ing the main subject of this paper. It appears that importance of the dHvA
effect is not restricted to its “benefits” in the Fermi surface decoding. The
oscillating field dependence of the energy of metals in magnetic field is the
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base of some remarkable low-temperature phenomena being of independent
interest. The formation of diamagnetic domains is definitely one of them.

So, let the formation of Landau levels in external uniform magnetic field
H cause in a metallic sample some oscillating addition ε̃ to the energy and,
respectively, oscillating magnetization (the dHvA effect). This means that
the magnetic field inside the sample, ormagnetic induction B, differs slightly
from the external field H. It is this difference

B −H = 4πM

which does represent the oscillating magnetic moment. Thus, besides ε̃, we
should also bear in mind the energy of excess magnetic field B −H in the
sample. Taking for simplicity our sample in the form of a long cylinder
parallel to the magnetic field, we can write the total energy change per unit
volume as the sum

ε̃+ (B −H)2/8π. (2)

Since ε̃ is determined by the magnetic field B acting on electrons, and
oscillates in this field, it is evident that B will change relative to H always
towards the nearest minimum of ε̃. The exact value of B is obtained from
the obligatory condition for this sum to acquire its minimal possible value,
which requires vanishing its B-derivative. It means that

∂ε̃

∂B
+

B −H

4π
= 0,

or

B = H − 4π ∂ε̃

∂B
≡ H + 4πM,

which gives us the expression for the magnetic moment M(B) ≡ −∂ε̃/∂B.
The energy ε̃ is described by the exact LK formula, which takes into account
both temperature and the Fermi surface shape but is very cumbersome.
We take the simplest approximation for ε̃, sufficient for understanding the
reasons of the phenomenon described, namely,

ε̃ = acosϕ,

with the phase
ϕ = 2πF/B. (3)

Here the amplitude a is governed by various experimental conditions whereas
the magnetic frequency F is directly proportional to the area A of extremal
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Fermi surface cross-section for the given metal (see Fig. 5), as mentioned
above, represents Onsager relation

F = c~A/2πe.

It is easy to see that if a¿ 1, the difference between B and H is negligibly
small as compared to the oscillation period, that is the phase ϕ remains
practically unchanged at the replacement of B by H.It seems evident that
in this case the first derivative of ε̃ - the magnetic moment M - and its
second derivative — the differential susceptibility

χ = dM/dH ∼= χB = ∂M/∂H ≡ ∂2ε̃/∂B2

must have the sine or cosine shape as functions of the magnetic field. This
means that the experimentally measured M(H) and χ(H) dependences will
have the same shape. This requirement is usually fulfilled but under some
conditions it might be definitely not the case, which is very important for
the domain formation.

From the expression for a phase (3) we have

∆ϕ =
∂ϕ

∂H
∆H = −2πF

H2
∆H

and for ∆ϕ=2π

∆H = −H
2

F
.

Here H is the applied magnetic field, and negative sign shows the phase
increase with inverse field. Note that this expression is insensitive to the
difference B −H that appears and disappears periodically and always van-
ishes at ϕ=2πn. So, one can already see that the “period” of oscillations in
direct magnetic field ∆H decreases quadratically with the magnetic field.
This means that oscillations become very “fast” at low field with a corre-
sponding increase of the field derivatives and the differential susceptibility
χB increasing, as a matter of fact, without limit. Of course, it is possible if
and as long as the value of ωτ remains exceeding one with the decrease of
magnetic field, that is electrons still can perform more than one rotation in
magnetic field. Let us look at consequences of such susceptibility growth.
In the case considered, the field-induced change in magnetic induction will
be essentially different depending on the sign of χB. Indeed, this change

δB = δH + 4πδM = δH + 4π
∂M

∂B
δB ≡ δH + 4πχBδB,
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i.e.

1 + 4πχ =
∂B

∂H
=

1

1− 4πχB
,

or
4πχ =

4πχB
1− 4πχB

.

From this it follows that if the absolute value of χB grows, the denominator
increases, ∂B/∂H → 0 and 4πχ → −1 for negative χB, while for positive
χB the denominator vanishes and at χB → 1/4π ∂B/∂H → ∞, so that
the sample induction has to increase like a jump. As a result, instead of
a sine-like (harmonic) signal, the following picture should be observed in
dHvA experiments. In the vicinity of a minimum of ε̃, where χB < 0, B
remains practically unchanged over almost all period, and 4πδM ≈ −δM ,
and 4πχ ∼= −1 (almost as in a “superconductor”). But in the vicinity of a
maximum of ε̃, where χB is positive, the induction B and, hence 4πM ,

Figure 6: Transformation of the shape of dHvA signal y(x) when passing
from M(B) to M(H). In the left panel, the x-axis represents the magnetic
field inside of a sample, i.e. the induction B. In the right panel, the x-axis
represents the applied magnetic field H, reproducing a real magnetization
measurement. In both pictures, the curves y(x) are shown (from up to down)
for increasing of a: a ¿ 1, a = 1 and a À 1, (a can increase, for instance,
with temperature decrease). With this transformation, every point of the
left curves is shifted by the value of its respective y-coordinate either to the
left (y > 0) or to the right (y < 0), according to H = B − 4πM(B). The
most upper curve almost does not change with this transition. Note the
jumps ∆y = ∆B on the lower right curve.
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increase stepwise by ∆B approximately equal to the oscillation period
(see Fig. 6), as soon as

χB ≥ 1/4π. (4)

Such a saw-toothed M(H) dependence with almost vertical induction
steps was first observed by D. Shoenberg in the noble metal samples [6]. As
we see, metals in magnetic field demonstrate quite a “reasonable” behavior:
the sample induction B changes in such a manner that the energy stays
maximally long near its minimal value while the high energy intervals ∆B
(strictly speaking, these are the regions of absolute instability) are jumped
over (see Fig. 7).

Figure 7: On the right: B(H) dependence in a long sample for y(x) given
by the lower right curve of Fig. 6. The diagonal B = H crosses the curve at
M = 0. The function ε̃(B) is shown at the left. The regions of high energy
(absolute instability) are absent in the sample as they “jump” by ∆B.

By now, one can already “guess” (all of us are slow on the uptake) that
the choice of some other geometry of experiment, say, by using a planar sam-
ple normal to the field, rather than a cylinder parallel to it, might provoke a
different scenario of events. Indeed, in the planar geometry with all sample
dimensions considerably exceeding its thickness, the compulsory continuity
of the normal component of B results in the requirement

B = H (5)
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SinceH varies continuously, therefore in this geometry of experiment any
jump in ∆B cannot exist in principle. It means, in turn, that the above-
mentioned “reasonable” behavior of metal cannot presumably be realized:
the induction must acquire all consecutive values near the energy maximum,
which is definitely unfavorable. This is what to think about. Looking ahead,
we declare at once that, thanks to domains, a metal manages to behave
“reasonably” and rush an unfavorable region ∆B by in this case as well.
Nevertheless, several years had passed until Condon formulated the idea of
domain formation [1].

Figure 8: The energy variation as a function of B is shown for a small
region slightly larger than one period of oscillating function ε̃. The external
magnetic fieldH0 is chosen to be exactly at the maximum of ε̃. The parabola
ε represents the variation of the magnetization energy for a very long sample
in applied magnetic field H0. The upper curve shows the sum ε̃+ ε . It has
minima at B1 and B2. The energy of a plate-like sample with domains is
shown by the dashed line.

It is to be said that this idea was preceded and, to some extent, stim-
ulated by numerous experiments with beryllium single crystals. The Fermi
surface of this metal contains the so-called “cigars” with the shape quite sim-
ilar to a long cylinder. That is why in this metal amplitudes of the dHvA
and other effects in magnetic field are very high. Besides dHvA, where the
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above-mentioned stepwise behavior of magnetic moment is well-pronounced,
many other effects, including the transversal magnetoresistance, were mea-
sured. Very large amplitude of these oscillations is a specific feature of the
beryllium Fermi surface. It is essential that what is measured, is a long strip
or a rod perpendicular to the external magnetic field. That is, absolutely un-
usual magnetic field dependence of the amplitude of these oscillations could
be explained only by the domain formation in a sample, or, in other words,
breaking it up into areas of different magnetization.

To understand it better, let us appeal to a graphical presentation of
the full energy change (2) depending on the magnetic field in the sample,
that is on B. The graph (Fig. 8) shows a small region of the variations
of B in the vicinity of a given external magnetic field H0, that is exactly
corresponds to an immediate maximum of the oscillating function ε̃. The
parabola ε = (B − H0)

2/8π depicts the second term in (2), that is the
magnetization current energy caused by the difference (B−H0 ) in a sample.
We emphasize that for the time being we are dealing again with a long sample
oriented along the magnetic field. The upper curve shows ε̃+ ε - the total
energy (2). Our figure corresponds to the situation when the curvature of
parabola is obviously less than the curvature of ε̃ in a maximum, so that
the condition (4) is satisfied. Only in this case the sum ε̃ + ε has two
symmetric minima in the points B1 and B2. (In the opposite case, when
4πχ<1, the curve ε̃ + ε has always only one minimum). Let us remind
that we have chosen H0 exactly in the maximum and hence the energies in
these minima coincide. Of course, if one shifts an applied magnetic field H
slightly left of H0, with a simultaneous shift of the parabola ε , then ε̃ + ε
will become slightly warped, with energy in the minimum B1 becoming less
than in B2. A similar right shift will cause an opposite kind of warping
and lowering the minimum B2 below B1. Since the state of a metal always
corresponds to minimal energy, as soon as the external field crosses the point
H = H0, the sample magnetic induction jumps from B1 to B2. The negative
magnetization B1 −H0 =4πM1 at this point will, respectively, change into
the positive one B2−H0 = 4πM2, in other words, the sample jumps from a
dia- to a paramagnetic state.

Now we look at the domain formation in this picture (Fig. 8). To
do it, we take the same crystal with the same crystallographic orientation
related to the magnetic field, that is leave ε̃ unchanged, but reshape the
sample transforming it into a large thin plate perpendicular to the field, so
that, with the well known boundary condition, equality (5) must be fulfilled
everywhere. This means B − H = 0, allowing us to remove mentally the
parabola ε . As a result, the sum ε̃+ ε (2) simply coincides now with ε̃. By
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comparing this result with the previous one, that is with the curve ε̃+ ε on
the figure, we see that over a large range of magnetic fields in the vicinity of
H0, the energy of metal becomes considerably higher than the minimal value
realized in a thin sample. This exceeding is maximal at H = H0 being equal
to δε. The question is if it is possible to reduce the energy by dividing our
plate into a set of thin regions — “domains”. Let their length, which is the
plate thickness, be much larger than the “domain” thickness, in which case
the cross-section of such a “domain” looks similar to that for a solitary long
sample oriented along the field. That is why we can apply the formula (2)
that is the curve ε̃+ ε for each of them. If we now break them up into two
sorts with the induction values B1 and B2 and mix carefully to make these
sorts alternating everywhere, then these domains (already without quotation
marks) will represent what is called Condon’s domains. Since domain size
and number are for both sorts equal, in each sample region much larger
than the domain size the average induction remains equal to H0, that is the
condition (5) is now satisfied on average throughout the whole sample. In
each domain the energy (2) corresponds to a minimum, which means that
for the whole plate the energy gain will be the same, namely δε. Fig. 9
schematically shows such domain structure. If the magnetic field changes
towards B1 or B2, then the domain sizes vary correspondingly, increasing
the thickness of one sort of domains and decreasing the other in such a way
that the condition (5) remain on average satisfied. Simple calculations show
that formation of domains with the constant values B1 and B2 in each sort
of them becomes more profitable than the uniform state for all values of
magnetic field in region B1 < H < B2. This energy gain is shown in the
Fig. 8 by the dashed line.

Figure 9: Schematic picture of the domain structure in a plate-like sample.
In reality, the period of the structure is much smaller than the thickness d.
The arrows show directions of magnetization in phases 1 and 2.
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In 1966 Condon formulated first the idea of such domains, and already
in two years Condon and Walstedt [7] demonstrated the domain formation
in nuclear magnetic resonance (NMR) experiments in silver. Let us remind
that nuclear magnetic moment, or spin, rotates in the magnetic field with
the angular frequency of such rotation, or precession, strictly proportional to
the field strength. If, besides, an additional high-frequency electromagnetic
field effects a nucleus, a resonant absorption of electromagnetic energy by
this nucleus occurs as soon as the field frequency coincides with the preces-
sion frequency. The frequency of a.c. field, created usually by a small coil
winded sometimes directly on a sample, can be measured with enormous
precision, and hence NMR gives the opportunity to measure magnetic field
in a medium with the same precision (of course, only if one succeeds in
measuring the absorption itself, which is not a simple task). In a uniform
field, a narrow NMR line is observed, whereas any non-uniformity broadens
this NMR peak (line). Condon and Walstedt were the first who observed
two coexisting resonant frequencies, that is the line splitting. At changing
the external magnetic field the effect arose periodically with the period cor-
responding to the dHvA period in the same sample, while the magnitude
of splitting had the order of half a period and corresponded to two sorts of
domains with induction values B1 and B2.

Unqualified success of this experiment was a well-deserved result of over-
coming a large number of difficulties. Besides all already mentioned condi-
tions of domain formation including low temperature of 1.4 K, very high
magnetic field uniformity with spatial fluctuations essentially less than the
splitting value δB = B2 − B1 = 12 Gauss against the field of 9 T, and
very high perfection of a Ag single crystal, an additional difficulty consisted
in detecting of NMR in a metal, especially in a very pure metal, as in the
experiment. The case is that a.c. electromagnetic field penetrates a metal
only at very small depth, the so-called skin layer. That is why only small
number of nuclei near the sample surface contribute to absorption. With
the account of all above-mentioned factors, the authors presumably had very
few chances for success, thus the result speaks for itself.

The authors naturally tried to obtain the same result for beryllium,
the “champion” among metals with the highest amplitude of the dHvA
effect, but suffered a reverse. The method did not work. Contrary to silver
where the nuclear magnetic moment is equal to 1/2 and its projection to
the magnetic field has only two allowed values: along and opposite to the
field, this moment for beryllium is equal to 3/2, so that initially, without any
domains, the so-called quadrupole splitting of the NMR line already exists.
This is one more difficulty in observation of domains in many metals by
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the NMR method. All the problems discussed where presumably the reason
why after a success with silver and failure with beryllium no single work
devoted to revealing diamagnetic domains by the NMR method appeared in
the literature. The progress and all recent achievements in visualization of
diamagnetic domains is related to a new investigation method — Muon Spin
Rotation, called µSR [8]

This method was developed at the “interface” between two branches
of physics — nuclear physics and condensed matter physics, and actually is
almost complete analog of the NMR. As early as in 1979, Yu. Belousov
and V. Smilga suggested to use it for observation of Condon domains [9].
The technique of that time, however, was not yet adequate, “interface” was
not formed, and their work remained, alas, unnoticeable. 16 years later
the idea of using the µSR method for domain observation was reborn, this
time with a project proposed by G. Solt at the Paul Scherrer Institute,
Switzerland, where this method is of a wide use. Experiments in beryllium
were a success [10], and splitting of the µSR peak, similar to that for NMR,
caused by diamagnetic domain formation, was observed.

The µSR method, in spite of its direct analogy with NMR, has, of course,
a number of distinctions as well. Muons are unstable elementary particles
with the lifetime close to two microseconds. They represent an outcome
of activity of a powerful accelerator. A positive muon, having sufficiently
high initial energy, can penetrate the sample at fairly large depth and stop
at some interstitial remaining there during the whole lifetime. It also has
a spin precessing in exact correspondence with the local value of magnetic
field. Decay of a muon creates a positron, or anti-electron, which rushes
our mostly in the direction of its spin and is registered by one or another
detector. In the experiment, a great number of muons is detected, with all
their spins rotating from strictly the same starting position. If all muons
are in the same magnetic field, then the number of registered events in each
detector will oscillate with time with the precession frequency f exactly
determining the magnitude of this magnetic field, that is f = gB, where the
constant g is well known for muon. In this methods there is no need in a.c.
electromagnetic field since the precession frequency is measured directly, and
therefore the first difficulty of NMR measurements caused by a skin-layer no
longer exists. The second difficulty is absent as well since in any matrix the
“job” was made by the same “test” instrument with the spin 1/2. The fact
that spin precession occurs far enough from the sample surface, represents
the third important advantage of this method, at least for this problem.
As a result, by analogy with NMR, the width of µSR peak corresponds to
the amplitude of magnetic field non-uniformity. If now the sample becomes
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Figure 10: Several µSR spectra over a small region of applied magnetic
field H near the onset of Condon domains. (The spectra are shown without
noise). The peaks of the spectra without domains are always along the
diagonal B = H. In the domain region, there are two peaks of f1 and f2
corresponding to B1 and B2.

stratified into two phases with the magnetic field values B1 and B2, that is
domains, then one part of muons will find themselves in the field B1 and the
other part — in the field B2, which will result in two precession frequencies
and, respectively, in a splitting of the µSR peak into two peaks.

The Fig. 10 demonstrates the results of µSR experiment on a crystalline
plate of beryllium [11]. Each time when H goes through the region B1 <
H < B2, the spectrum will split into two peaks with the fixed frequencies
corresponding to B1 and B2. While the field changes, the amplitude of one
peak decreases and the amplitude of the other increases, which corresponds
to the change of relative volumes occupied by these two phases. Analysis
of the data available confirms that the relationship (5) is always exactly
fulfilled. At any other values of magnetic field beyond the given range, a
standard narrow peak is observed with the frequency corresponding to this
field.

Now we can say that a successful result of the experiments with beryl-
lium is quite natural since this material, as it has been already mentioned,
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is a “champion” in the dHvA amplitude. In the magnetic field 3T, diamag-
netic domains exist up to the temperature ∼ 3K. For the most other metals,
however, the dHvA amplitude is considerably less than for beryllium. As a
rule, it remains under all conditions noticeably less than one tenth of period.
But it is well known, that the condition (4) or a ≥1 (which is the same for
a sine-shape dHvA signal) is satisfied if the amplitude 4πM ≥ P/2π (P is
the period). At first glance, Condon domains seem impossible under these
conditions representing a very rare phenomenon, which is, however, not the
case. Actually, the shape of dHvA signal at very low temperatures is al-
ready essentially different from a sine curve. A careful analysis shows that
even for a very small dHvA amplitude, the condition (4) at sufficiently low
temperatures will be satisfied without fail, though the range B2−B1 in this
case may be very narrow, essentially less than the period. Therefore, the
difference in magnetization and the µSR peak splitting are extremely small,
and experimental observation of domain formation becomes much more dif-
ficult. It requires both absolutely perfect crystals and more sophisticated
measuring technique.

Just such experiments have been recently performed in the same the
Paul Scherrer Institute. The mentioned more sophisticated technique mak-
ing it possible to diminish essentially the noise level, the so-called MORE,
was worked up at this institute. Formation of diamagnetic domains was dis-
covered in all measured single crystals of tin, aluminum, indium and lead.
(They were grown in the P.L. Kapitsa Institute of Physical Problems al-
most 30 years ago). The condition for domains to exist was restricted to
several tenth of Kelvin temperature. Success of this work [11] was naturally
based on the many year work of numbers and numbers of physicists. Now
one can be sure that diamagnetic, or Condon, domains represent a phenom-
enon spread as widely as the dHvA effect though requiring much more rigid
conditions for their observation.

Two more questions should be mentioned, at least casually, in this pa-
per. The first, quite natural question is that of a mechanism of electric
current in a rather thin, of order of one micron, domain wall. So, in beryl-
lium at B2 − B1 around 30 G, the current density in the wall has to be∼= 3.105À/cm2. It is a very large value. In ordinary magnetic domain
formed by spins (atomic magnetic moments) with opposite direction, this
mechanism is clear: currents circulating in adjacent domains, respectively,
clockwise and anticlockwise, add at the boundary forming thus a magne-
tization current. But in our case Larmor rotation of electrons is identical
both sides of the boundary so that in this sense the boundary is not marked
out. The answer consists in the fact that in the dHvA effect not only mag-
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netization but also the crystal size is varied, which is knows as the striction
effect. The case is that the phase of oscillating energy ϕ =2πF/B (3) is
determined not only by the induction B but also by the value of F , that is
by the Fermi surface cross-section, which, in turn, depends on the sizes of
a crystal cell. That is why a metal in the external magnetic field changes
not only its magnetization but also the cross-section, or the volume, of the
Fermi surface by a proper dimension changes, in order to approach the en-
ergy minimum “faster”. While jumping from B1 to B2, this striction also
suffers a jump. In this process, opposite magnetization corresponds, in some
sense, to opposite deformation. In domains, on the contrary, variation of de-
formation from one value to the other must occur in a domain wall more
or less smoothly. Now it is clear that larger Fermi surface volume, that is
larger charge density, corresponds to a diamagnetic phase while smaller vol-
ume corresponds to a paramagnetic phase with the charge density gradient
in the domain wall providing the required magnetization current. Of course,
striction is directly proportional to magnetization and has a very small mag-
nitude. So, in the above-mentioned beryllium with a record magnitude of
effects the deformation has the order of one per million. Thus, formation of
the domain structure is also accompanied by a corresponding, unfortunately
very small, periodic deformation of the unite cell size and, moreover, relief
at the sample surface. This makes it very difficult for observation even by a
heavily aided eye.

This is not the only place where deformation, or formation of domains
from different density phases, reveals itself. Measurements of magnetostric-
tion in a beryllium plate resulted in discovery of an absolutely amazing
property of the formed domain structures, which cannot be named other
than “supersoftness” [12]. It should be noted that beryllium by itself is
a very hard metal, inferior by this property only to tungsten and iridium.
Its Young’s modulus is almost one order of magnitude higher than that of
copper. Nevertheless, a copper needle of a regulating screw pressing the
beryllium plate to the measuring instrument with minimal force, periodi-
cally, at the formation of domain structure, comes down the sample at a
rather noticeable depth. The depth of a “pit” under the needle, which, of
course, heals instantly as soon as the sample becomes single-phased, corre-
sponds to at least hundredfold drop in the Young’s modulus. This unique
behavior can be explained only in terms of corresponding domain restruc-
turing in the vicinity of the needle.

The second question is as follows. In our opinion, there is a direct anal-
ogy between described diamagnetic domains and alternation of normal and
superconducting phases in the known intermediate state of a type I super-
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conductor. Indeed, a long thin cylindrical superconducting sample oriented
along the magnetic field, at some critical field Hc demonstrates a stepwise
transition from the superconducting state with B1 = 0 into the normal one
with B2 = Hc. Of course, both states correspond to a minimum of energy.
If we now take a sample of the same metal but in the shape of a thin plate
perpendicular to the field, pure geometric considerations will again bring
us to the necessary condition (5). However, in the magnetic field interval
between B1 and B2, that is between zero and Hc, a uniform solution will
possess some excess energy. Minimal energy will be achieved by fragmenta-
tion of a sample into alternating “domains” with the induction B1=0 and
B2 = Hc, that is into normal and superconducting phases, exactly as in the
case of diamagnetic domains. In this case the condition (5) is again fulfilled
on average on the account of proportional changes of the relative volumes of
the phases. Actually the analogy is even closer. From the analysis of domain
structure periods it results that these may be very close in samples of the
same thickness. This means that domain structures of either shape may be
rather similar to such different phenomena as superconductivity and dHvA
effect. Unfortunately, this is the end of analogy and remaining distinctions
have a fundamental character. If the “magnetic contrast”, that is the ratio
of B2−B1 to B2, is almost hundred percent for the intermediate state image,
then for Condon domains it is so far 0.1% at best. Besides, the magnetic
field itself is here hundred times more, which creates an additional obstacle
for the magnetooptical method used for imaging. However, the principal
possibility of obtaining a diamagnetic domain image remains, which gives
ground for some optimism.

In conclusion, a couple of words should be said regarding “practical
application” of Condon domains. They give an absolutely unexpected pos-
sibility of direct approach to the question of compressibility of metals. It
appears that if compressibility of metals βmet is governed exclusively by the
kinetic energy of the electron gas, i.e. βmet = βel, then only in this case no
contact voltage exists between domains and, hence, the domain wall interior
contains no electric field.

In 1957 M.I. Kaganov, I.M. Lifshits, and K.D. Sinel’nikov predicted the-
oretically [13] the effect of Fermi level oscillations with magnetic field

δµKLS(H) =
∂ε̃(H)

∂N
,

where the energy ε̃ already mentioned above, is described by the exact LK
formula and N — is the density of electrons. The result was obtained for
the case of constant N . Nevertheless, as a result of striction, the volume V
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changes, N = N0/V,N0 is a constant quantity of electrons in a crystal, and
the complete change of Fermi level is

dµ = δµKLS +
∂µ

∂V
δV,

where δV is the striction in the crystal. We can write

δµKLS =
∂ε̃

∂V

∂V

∂N
=

V

N
δp̃,

where

δp̃ = − ∂ε̃

∂V
,

and

δV =
∂V

∂p
δp∗,

where δp* is the pressure decrease caused by striction. The total variation
of pressure for a sample with free boundaries is zero

δp̃+ δp∗ = 0,

and

dµ =
V

N
δp̃(1 +N

∂µ

∂V
βmet).

Here the βmet is a compressibility of the metal which can be found in a
Handbook. Now we rewrite

∂µ

∂V
= − ∂p

∂N
,

and from
∂N

∂p
=

∂(N0/V )

∂p
= −N0

V 2
∂V

∂p
= −N

V

∂V

∂p
= Nβel

we have

∂µ

∂V
= − 1

Nβel
.

Here βel is a compressibility of electron gas which could be found, in princi-
ple, from an equation of state for electron gas in this metal. Of course, βel
is connected with a kinetic energy of electrons only. At least, we have for
the net shift of Fermi level
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dµ = βµKLS(1−
βmet
βel

).

Therefore, one can, in principle, find the value of βel from a contact
voltage measurement. In the case βmet = βel the first derivative of exchange
energy has a maximum and only kinetic energy of electrons contributes
in compressibility. Only in such case the effect of Fermi level oscillations
is wholly compensated as a result of magnetostriction gaining no contact
voltage between domains, no electrical field in domain walls, and no extra
energy. Maybe just for this not trivial reason we can see the Condon domains
in all metals [11].

On the other hand, if we assume that the whole magnetization current
in a domain wall is a result of only charge density gradient, that is domains
are actually only diamagnetic, with negligible role of spins, it appears that
compressibility of metals is completely determined by the construction of
their Fermi surface.

Indeed, let the difference in magnetization between neighboring domains
be really caused by deformation accompanied by electron density changes.
Then the magnetization current density in a domain wall can be described
by the formula [14]

jm = c curl
P
k

nk(r)µk

Here, nk(r) is the number of Larmor orbits corresponding to the µ mag-
netic moment of a unit volume µk, c is the light velocity. Let us integrate
jm over the domain wall thickness from one domain to another taking into
account that the orbital magnetic moments of all electrons are parallel to
the magnetic field. This gives the magnetization current in the wall related
per unit length of this wall along the field,

J= c
P
k

(N2 −N1)kµk

where (N1,2 )k are the volume densities of charges with magnetic moment
µk in neighboring domains. Since the δN difference is small, all orbits can
be considered to be situated on the Fermi surface. The characteristic values
can be estimated as follows. The magnetic moment of a Larmor orbit is

µk =
JLSL
c

,

669



where JL = ωce/2π is the current on Larmor orbit and SL = πR2H is its area.
Here ωc = eH/mc is the cyclotron frequency, e is the charge of the electron,
RH = v⊥/ω is the Larmor radius, and v⊥ is the velocity of electrons on
the Fermi surface in the direction normal to the field. We can write the
complete current J in the domain wall per unit wall length in the magnetic
field direction as

J = δN
c

H

mv2F
2

CFS = δN
c

H
εFCFS ,

where δN is the total difference of the numbers of charge carriers (electrons
and holes) in neighboring domains, that is, the difference of the Fermi surface
volumes in these domains, and the constant CFS is a result of averaging v⊥
over the Fermi surface. As the induction jump between neighboring domains
is

∆B = 4π∆M = (4π/c)J,

where J is just the current in the domain wall, we have

∆MH = δNεFCFS.

The changing of charge density δN/N0 can always be considered equal to
γCγ where γ is striction and Cγ is the coefficient unambiguously determined
by the Fermi surface shape. (Clearly, this coefficient is equal to 3 in the
model of free electrons). So, we can rewrite

∆MH = γN0εFCFSCγ.

At least, we have the well-known formula for striction [6]

γ =
MH

Y

∂ lnA

∂γ
=

MH

Y
CA.

Here Y is Young’s modulus and the constant CA shows a changing of Fermi
surface cross-section A with striction γ. As a result, we have

Y = N0εFCFSCγCA,

where all coefficients are fully determined by the Fermi surface structure.
Here, εF is the kinetic energy of electrons on the Fermi surface, that is, εF =
~2k2F /2m. For instance, for beryllium [12], the correct Young’s modulus
value was obtained in such a simple way.

To summarize, we can say that no wonderful Condon domains are con-
nected with a compressibility of metal for its appearance is directly con-
nected with deformation. But the concept described above in a very simple
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way, shows that conduction electrons should fully determine its compress-
ibility coefficient. Of course, it is much more strong result and the result is
strange. At the same time, the formation of diamagnetic domains is doubt-
less characteristic for all metals; the only problem is the extremal difficulty
of creating the necessary conditions for most of them. As mentioned, such
domains were observed in silver, beryllium, tin, lead, indium and aluminum.
In other words, the very possibility of the existence of diamagnetic domains
lends support to the point of view according to which conduction electrons
should fully, or almost fully determine the compressibility of metals. Of
course, it is very difficult to say now to what extent this conclusion is quan-
titatively accurate.

I am indebted to L. Maksimov, D. Sholt, V. Mineev, A. Dyugaev for
interesting discussions of the questions touched upon and to M. Schlenker
for useful remarks.
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