
HAIT Journal of Science and Engineering, Volume 1, Issue 3, pp. 436-469
Copyright C° 2004 Holon Academic Institute of Technology

Quantum Hall electrodynamics:
classical and relativistic aspects ∗

Israel D. Vagner

Research Center for Quantum Communication Engineering,
at Department of Communication Engineering,

Holon Academic Institute of Technology, 52 Golomb St., Holon 58102, Israel,

Department of Physics and Center for Quantum Device Technology,
Department of Electrical and Computer Engineering,

Clarkson University, Potsdam NY, USA,

Grenoble High Magnetic Fields Laboratory,
Max-Planck-Institute für Festkörperforschung and CNRS,
25 Avenue des Martyrs, BP166, F-38042, Grenoble, France

e-mail: vagner_i@hait.ac.il

Received 26 June 2004, accepted 23 December 2004

Abstract

Physics of any system is governed by a set of conservation laws
which depends on the system dimensionality. A typical case are elec-
trons in external magnetic filed. The central players here are the adi-
abatic invariance of the orbital magnetic moment of an electron in a
magnetic field in classical physics and its quantum counterpart — the
Landau levels.
These general principles have recently attracted growing interest

due to the puzzling discovery by R. Mani and A. Zudov’s groups of
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nondissipative structures in two-dimensional electron systems under
the classically strong magnetic fields ωcτ À 1.
It may well be that this quantum-classical controversy is rather

in terminnology, and the origin of physical mysteries of a magnetized
two-dimensional electron gas is of more general, probably, topological
origin, and follows from the internal symmetries of a two-dimensional
electron gas in a magnetic field.
While the experimental observation of the wave frequency depen-

dent "windows" of vanishing magnetoresistivity are by now widely dis-
cussed in the literature, the aim of this review is to collect some already
known information on the hidden symmetries of these systems, like re-
laivistic and scaling invariance, and to apply to them the Chern-Simons
electrodynamics.
The relativisticaly invariant electrodynamics of quantum Hall me-

dia is discused and some new solutions are presented, generic to the
two-dimensional electron system under magnetic field in nondissipative
regime.
We review here also some previous works related to the classical-

quantum finite frequency responce of the two-dimensional electron sys-
tems under a wide range of magnetic fields. The phenomenon of zero
resistivity in these systems is instructive also as a rich enough toy
model to study the basic laws of statistical physics, leading to funda-
mental understanding of Irreversibility. This is discussed in details in
terms of the Basic Irreversible Cycle for Electrons in Magnetic Fields
(BIC EMF). The helicon mode is chosen as a good example of an
electromagnetic wave propagating due to the self-consistency of the
electromagnetically induced Hall currents in the sample. The notion
of the quantum-Hall-helicon mode is introduced.
Design and feasibility of relevant experiments are discussed.

PACS: 73.21.-b,73.40.-c,73.43.-f

1 Introduction

Two decades after discovery of the quantum Hall effect (QHE) [1—3] revealed
a rich world of wonderful physics contained in two dimensional electron gas
(2DEG) under strong magnetic fields at low temperatures. Large amount of
experimental and theoretical work on this subject is done and undoubtely
correct models and theories on different aspects of the phenomena have
been constructed. Neverthless, these system were and still are surrounded
by some mistery.

A good example is the new anomalies in the microwave absorbtion in
QHE systems revealed recently in the ingeneous experiments in the groups
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of R. Mani [4] and A. Zudov [5].
The puzzle is in the fact that the famous QHE zero resistance states,

the manifestation of the quantization of the Landau levels, ~ωc(t) >> kBT ,
here ωc(t) = eH/m∗c is the cyclotron frequency, (e,H,m∗, c are the electron
charge, external magnetic field,electron effective mass, and light velocity,
respectively), appear now in the apparently classical regime of magntore-
sistance, i.e. at sample parameters where thermal smearing of the Landau
levels is larger than the distance between two adjasent Landau levels — the
Landau gap. This corresponds to the classically strong magnetic fields:
ωcτ À 1, here τ is the electron relaxation time.

These experimental findings have stimulated recently a number of differ-
ent theoretical models [6]. The possibility of absolute negative conductivity,
which is commonly believed to be among the main mechanisms leading to
the vanishing magnetoresistance have been considered for the first time by
Ryzhii already in 1969 [7]. More recent theoretical [8—16] and experimental
[17—21] studies of the finite frequency responce of QHE systems have been
active in 1980-1990-th and some insight have been gathered at that time.
Nothing unexpected has been observed and until recent discoveries of the
Mani and Zudov groups the subject was practically abandoned.

The aim of this paper is to review some previous work related to the
classical-quantum finite frequency responce of the two-dimensional electron
systems under a wide range of magnetic fields.

In Sect. 2 the relativisticaly invariant electrodynamics of QHE medium
is discused and some new solutions are presented. It may well be that this
quantum-classical controversy is rather in terminnology, and the origin of
the 2DEG+H physical mysteries is of more general, probably, topological
origin and follows from the internal symmetries, notably the Chern-Simons
one, generic to the two-dimensional electron system under magnetic field in
nondissipative regime.

The phenomenon of zero resistivity in these systems is instructive also as
a rich enough toy model to study the basic laws of statistical physics, leading
to fundamental understanding of Irreversibility. This is discussed in detailes
in Sect. 3 in terms of the Basic Irreversible Cycle for Electrons in Magnetic
Fields (BIC EMF), and design and feasibility of relevant experiments are
presented.

1.1 Relativistic invariance of quantum Hall effect

Relativistic and scaling invariance of the QHE can be obtained from the
following simple phenomenological consideration [16].
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Under very general conditions, in the theory of continuous media the in-
duced charges and currents are linearly connected with electric and magnetic
fields:

Jµ = ΞµνρF
νρ (1)

where jµ is the current, Fνρ is the electromagnetic field strength tensor, and
Ξµνρ are the coefficients, defining the physical properties of a conducting
medium. The coefficients express the linear response of the medium (con-
ductor, insulator, ferromagnet, etc.) to applied fields. In all usual condensed
matter cases medium destroys relativistic invariance of Maxwell equations.
In vacuum, which is a relativistically invariant medium, Ξµνρ is zero. If
the coefficients Ξµνρ form an invariant tensor: Ξ0µνρ = Ξµνρ where prime
corresponds to a moving frame, the medium would preserve the relativis-
tic invariance. In D + 1 space-time dimensions the only constant tensors
are the metric tensor gµν and the totally antisymmetric D + 1 component
tensor �µν ... . In 3 + 1 dimensions it is impossible to construct a nonvan-
ishing constant three-component tensor, out of gµν and �µνρσ. Therefore the
only relativistically invariant medium in 3+1 dimensions is vacuum, where
Ξµνρσ = 0.

However, in 2 + 1 dimensions such a tensor may exist: σµνρ ∝ �µνρ. Let
us show that this situation is realized under the QHE conditions.

Indeed, in the QHE medium (in the plateau regime) the material equa-
tions are:

j1 = σxyEy ≡ ναE2; j2 = −σxyEx ≡ −ναE1 (2)

where ν is the filling factor and α is the fine structure constant. These two
equations for the Hall currents could be cast in the form:

ji = ν�ij0E
j (3)

where i, j = 1, 2. The zero component of current

j0 = ναB3 (4)

is, in fact, the Faraday law for a nondissipative medium:
R
j0 ∝ Q ≡

να
R
Bz.
Eqs. (3),(4) at ν = 1, could be cast in the form:

ji = 2cαeijkFjk (5)

Eq. (5) follows also from the expression action:

SA ∝
Z

d3x

·
−1
c
jiAi + αeijkAiFjk

¸
.
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Indeed, the variation of this action:

δSA ∝
·
−1
c
jiAi + 2αe

ijkAiFjk

¸
δAi = 0 (6)

yields Eq. (5).
The mentioned above Lorentz invariance of QHE is connected with the

Chern-Simons term, which is a new, compared to 3D electrodynamics, term
in Lagrangian.

Inserting Eqs. (3),(4) into the effective Maxwell equations, we obtain
the macroscopic equations in medium in Fourier space [9, 16]:

kµFµν = να�µνρ
√
k2Fνρ; �µνρ∂µFνρ = 0 (7)

or
∂µFµν = να�µνρ

√
∂2F νρ. (8)

The Lagrangian generating these equations is:

L = 1

4
fαβ

θ(∂α∂
α)√

∂α∂α
fαβ + ν�αβγa

αfβγ (9)

where the first term is the vacuum Lagrangian, and the second is the Chern-
Simons term.

It can be easily shown explicitly by performing Lorentz transformation
for the currents and fields, that the nondiagonal components of the conduc-
tivity tensor preserves the Lorentz invariance while the diagonal components
destroy it. This will be elaborated in details in what follows.

1.2 Composite Fermions-Chern-Simons gauge transformed
particles

It is known that the integer quantum Hall effect (IQHE) can be qualitatively
understood on the basis of single electron wave functions in the electrostatic
potential of the long range fluctutions in the sample, the fractional quantum
Hall effect (FQHE) is essentially a many-body phenomenon, and was exten-
sively studied, mainly in the framework of the "Laughlin wave function"
formalism [22, 23].

A very popular model of Composite Fermions was sugested by Jain [24,
25], who used a very transparent picture of magnetic fluxes attached to
an electron, in the spirit of the Faraday magnetic flux lines piercing the
conducting media.
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The vector potential associated with this flux tube (solenoid) may be
written as:

�a(�r) =
Φ

2π

�z × �r

r2
(10)

where �z is a unit vector along the z - axis. The magnetic field B, associated
with such vector potential, is that of a vortex of strength Φ, localized at the
origin:

�B = curl�a = Φδ(�r) (11)

where the δ-function arises from the singularity, at �r = 0 of the vector
potential, Eq. (10). The magnetic flux connected to such field is:Z

�Bd�s = Φ. (12)

The Schrödinger equation for a particle in such a field, is:

Ĥ(Φ)ψ(r) =
1

2m

³
�P − e

c
�a
´2

ψ(�r) = Eψ(�r) (13)

where the canonical momentum operator �P is:
�P = −i~ ∂

∂�r
. (14)

The wave function ψ(�r) should be periodic under rotations on the angle
θ = 2π around z-axis.

For the flux-tube-particle composite, the spectrum of the angular mo-
mentum is:

cz = ~
µ
m− Φ

Φ0

¶
(15)

Following Wilczek, [26], the angular momentum of this composite particle
is equal to

s =
cz(m = 0)

~
= − Φ

Φ0
(16)

In general, s is neither integer nor half integer, and can take any value. If we
interchange flux-tube-particle composites, we will have an additional phase
factor. Since the interchange of two such composites can give any phase,
Wilczek called them anyons.

For a system of N flux-tube-particle composites, the charged particle
feels the vector potential of flux tubes, "glued" to all the other particles.
The corresponding Hamiltonian can be written as follows:

Ĥ =
1

2m

NX
i=1

³
�P − e

c
�ai(�ri, . . . �rN)

´2
(17)
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with the vector potential:

�ai =
Φ

2π

X
j 6=i

�z × (�ri − �rj)

(�ri − �rj)2
=
Φ

2π

X
j 6=i
∇θij (18)

where θij is the angle between the vector �ri − �rj and the x-axis. This
effective vector potential is nonlocal, since it depends on the position of all
particles and, in particular, vanishes at N = 1. The Hamiltonian, Eq. (17),
describes the interaction of charged particles with the Chern-Simons gauge
field [27], and this vector-potential corresponds to the following effective
magnetic field:

�B0i = �B − Φ
X
j 6=i

δ(�ri − �rj) (19)

which can be presented as

Beff = B − Φ
Φ0

2π~c
e

ne = B

µ
1− Φ

Φ0
2πc2Bne

¶
= B

µ
1− Φ

Φ0
ν

¶
. (20)

As it follows from Eq.(20), the effective magnetic field Beff is equal to
zero for the magnetic flux Φ = Φ0

ν . The case of the filling factor ν =
1
2n

is of special interest, because for Φ = 2nΦ0 the statistics of particles is not
changed. A very interesting situation corresponds to the filling factor ν = 1

2 ,
when the dimensionless magnetic flux

Φ̃ =
Φ

Φ0
(21)

is equal to 2. The completely filled Landau level with m = 1 and Beff = 0
corresponds to Φ̃ = 1.

1.3 Magneto-density oscillations

Let us give some classical insight into the flux-electron coupling, typical for
the ideal (nondissipative) plasma physics. The magnetic flux is frozen, i.e.
the charges are ”glued” to the magnetic field lines, if the time variation of the
magnetic field, or charge density, is slow enough. In 2DEG+H, axially sym-
metric fluctuation of the magnetic flux δΦ(t, r) will drive a charge density
fluctuation δn(t, r) which, in turn, will create a radial electric field E(t, r).
Finally, a magnetic moment δM(t, r) will be added to the initial magnetic
field, due to the azimutal Hall currents: jφ(t, r) ∝ ErHz. This may result
in an oscillatory process, i.e. in a periodic transformation of the magnetic
energy into the kinetic energy of Hall currents and vice versa, if the energy,
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stored in such fluctuation, will dissipate (due to the Joule heat produced by
the radial currents W∝ R jrEr) slow with respect to the oscillation period.
Since in QHE the diagonal conductivity is, practically, zero, one may expect
unusual for a 3D electron system in solids electrodynamics.

Consider the evolution of a density fluctuation δn(t,r) in an initially
homogeneous 2DEG with the areal density no in a homogeneous external
magnetic field along the z-direction H = Hz. We start with the continuity
equation:

−edδn
dt

+ divj = 0 (22)

where the current is defined as:

ji = σijEj . (23)

Assuming nondissipative regime σxx= 0, Eq. (23) reads:

−edδn
dt

= div(σxy [δE× h]) = −σxyhcurlδE+ [δE× h] gradσxy.

Using the Faraday law:

c curlE = −dB
dt
, (24)

we arrive at:

−edδn
dt

= −σxy
c

dδB

dt
+ [δE× h] · gradσxy. (25)

Neglecting the nonlinear term (the second term in the right side), we arrive
at the proportionality between the magnetic flux and the charge density:

δB = − ec

σxy
δn = −ie

2

h
δn. (26)

The proportionality of the electron density and the magnetic flux in a fluc-
tuation described above, is depicted in Fig. 1.

It follows from Eq. (25) that vanishing of the diagonal components of
the conductivity tensor σxx = 0 ensures that the Hall conductivity σoxy, the
only material parameter entering the linearized equations, is a constant of
motion. Moreover, the QHE fixes this constant at a universal value ie2/h,
(i is an integer or a simple fraction p/q), thus giving a universal relationship
between the charge density and the magnetic flux fluctuations.
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Figure 1: An axially symmetric fluctuation of the magnetic flux δΦ(t, r) will
drive a charge density fluctuation δn(t, r) which, in turn, will create a radial
electric field E(t, r). Finally, a magnetic moment δM(t, r) will be added
to the initial magnetic field, due to the azimutal Hall currents: jφ(t, r) ∝
ErHz.
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2 Quantum Hall electrodynamics

In this section we develop the electrodynamics of a purely two-dimensional
electron system under strong magnetic field. At sufficiently low tempera-
tures these systems are in a nondissipative QHE state at integer (IQHE) or
certain fractional (FQHE) filling factors. We follow closely the presentation
in [9, 16, 28] and present some of the consequences of the inherent symme-
tries of QHE medium on the in-plane electromagnetic wave propagation.

We describe here the effective electrodynamics of currents and charges
in the plane in two-dimensional electron systems. In QHE systems all the
possible solutions of Maxwell equations on the x3 = 0 plane are found for
components E1 and E2 of electric field and component B3 of magnetic field.

Introducing the field potentials
−→
A and Φ via

→
B =

→
∇×

→
A, (27)

→
E = −∂

→
A

∂t
−
→
∇Φ, (28)

and using the Lorenz gauge

∂µAµ =
∂Φ

∂t
+
→
∇
→
A = 0 (29)

where Aν are the components of electromagnetic potentials Aµ = (Φ,
→
A);

Xµ = (X0 = t,
→
X),we arrive at Maxwell equations in the form of four inde-

pendent D’Alambert equations

¤Aµ = −4πJµ, (30)

where Jµ are the components of currents, Jµ = ((,
→
J ), ( J0 = ( is the

charge density), (µ = 0, 1, 2, 3) and ¤ ≡ ∆− ∂2

∂t2 .
Any solution of these equations can be represented in the form

Aµ(X) =

Z
G(X − Y )4πJµ(Y )dY +A0µ(X), (31)

where dY ≡ dY0dY1dY2dY3. Here A0ν(X) is a solution of the free D’Alamber
equation and G(X) is the Green function defined by

¤G(X) = −δ(X). (32)

Of course, the free potentials A0µ(X) have to satisfy the Lorenz gauge too.

445



The choice of Green function is defined by boundary conditions, which
are dependent on the physical aspects of the problem. We choose here the
symmetric Green function [29] G(X) = Dsym(X) :

Dsym(X) =

Z
dKDsym(K) exp(iKX) =

1

(2π)4
P
Z

dK
exp(iKX)

K2
,

here KX = K0X0−K1X1−K2X2−K3X3;K
2 ≡ K2

1 +K2
2 +K2

3 −K2
0 and

dK ≡ dK0K1dK2dK3.

2.1 Charges and currents confined to a plane.

In the case of 2DEG layer (X3 ≡ 0) we assume that
Jα(X) = δ(X3)jα(x, t), (33)

where (α = 0, 1, 2), x ≡ x1, x2 and the component j3 of the current is equal
to zero

J3 ≡ 0.
The potentials Aµ(x, t) on the plane (X3 = 0) are

aµ(x, t) ≡ Aµ(x, x3 = 0, t) =

Z
dyDsym(x− y, 0, τ)4πjµ(y) +A0µ(x, x3 = 0)

(34)
where τ = x0 − y0. Since j3 ≡ 0, we have A3(X) ≡ A03(X) and the Lorenz
gauge condition on the plane has the formX

α=0,1,2

∂αaα + η3 = 0 (35)

where η3(x, t) = ∂3A03(x, x3 = 0, t).

For free potentials the gauge condition has the same formX
α=0,1,2

∂αa0α + η3 = 0. (36)

In the Fourier space

(k2 − ω2)aα(ω, k) = 4πj
eff
α (ω, k) + (k2 − ω2)a0α(ω, k), (37)

jeffα (ω,k) = jα(ω,k)f(ω, k)/2. (38)

Here f(ω, k) = θ(k2 − ω2)
√
k2 − ω2.
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Figure 2: Electrostatics of a 2D charge distribution.

It means that

∂β∂
βaα(x) = 4πj

eff
α (x) + ∂β∂

βa0α(x). (39)

It is important to note that in k-space the set of points such that (k2−ω2)
a0α(ω, k) 6= 0 satisfies the condition k2 < ω2, i.e. (k2−ω2)a0α(ω, k) ∼ θ(ω2−
k2). Indeed, A0µ(ω,k, k3) ∼ δ(ω2− k2− k23) if k

2 > ω2 then A0µ(ω,k, k3) = 0.
The functions a0α(ω, k) can be obtained by integration A0µ(ω,k, k3) over

k3. So when k2 > ω2, one gets a0α(ω, k) = 0.
Effective Maxwell equations in x-space for the field components E1, E2

and B3 on the plane x3 ≡ 0 can be obtained from (39) and (35), (36)

∂1 eE1 + ∂2 eE2 = 4πjeffo , (40)

−∂t eE1 + ∂2 eB3 = 4πjeff1 ; (41)

−∂t eE2 − ∂1 eB3 = 4πjeff2 ; (42)

∂1E2 − ∂2E1 = −∂tB3 (43)

where eB ≡ B − B0 and eE ≡ E − E0. Here E0α, B
0
3 are the components of

some free field solution.
These equations contain only components E1, E2 and B3 while the com-

ponents E3, B1, B2 are removed from them completely.
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In the Fourier space for Eqs. (40)—(43): one gets

−ik1 eE1 − ik2 eE2 = 2πf(k)j0(k1, k2) (44)

−iω eE1 − ik2 eB3 = 2πf(k)j1(k1, k2); (45)

−iω eE2 + ik1 eB3 = 2πf(k)j2(k1, k2); (46)

−ik2E1 + ik1E2 − iωB3 = 0. (47)

2.2 Electrostatics

The case ω = 0 corresponds to a stationary nondissipative solution under
QHE conditions. Equation (40) defines connection between electrical field
and electrical charge density in the limit ω → 0. Eq. (43)

∂2E1(x1, x2)− ∂1E2(x1, x2) = 0

gives the potential condition for electrical field. It means that the electrical
field is defined as the gradient of the electrical potential Φ(x1, x2):

Eα(x1, x2) = −∂Φ(x1, x2)
∂xα

or in the Fourier space

Eα(k1, k2) = ikαΦ(k1, k2). (48)

The magnetic field in the Fourier space is

ikαB3(k1, k2) = −2πkσEα(k1, k2). (49)

The charge density in the static case is connected with the magnetic field
B3 by relation (40)

j
(s)
0 (x1, x2) = −

B3(x1, x2)

(2π)2σ
. (50)

Let us introduce the ”vector” definition for field components

| Ψi =
 E1

E2
B3

 . (51)
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The electrostatic solution (ω = 0) has the form

| Ψ(s)(k1, k2)i = −
 ik1

ik2
βk

Φ(k1, k2), (52)

where Φ(k1, k2) is an arbitrary potential.
It means that for any potential function Φ(x1, x2) on the plane (x3 = 0),

the distribution of the components is

Ei(x1, x2) = −∂Φ(x1, x2)
∂xi

, (53)

B3(x1, x2) = σ

Z Z +∞

−∞
dk1dk2 exp[i(k1x1 + k2x2)]kΦ(k1, k2). (54)

Φ(k1, k2) = (2π)
−1
Z Z +∞

−∞
dx1dx2 exp[i(k1x1 + k2x2)]Φ(x1, x2).

The distributions of currents and charge connected with the distributions
of the field Ei, B by Eq. (50) stable with time.

If Φ(x1, x2) is independent of x2, then

Φ(x1, x2) ≡ Φ(x1), (55)

E1(x1, x2) ≡ E1(x1) = −∂Φ(x1)
∂x1

, E2 = 0 (56)

and B3(x1, x2) ≡ B3(x1) is defined by formula (53)
For currents J1(x1, x2) ≡ 0 and

J2(x1, x2) ≡ J2(x1) = −σE1(x1). (57)

2.2.1 Rotational symmetry

For investigation of the rotational symmetry solutions it is useful to use the
cylindric coordinates (r, ϕ).

If
→
x = (x1, x2) are Cartesian coordinates on the plane, then

x1 = r cos(ϕ), x2 = r sin(ϕ). (58)
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The field
→

F (
→
x) = (F1(

→
x), F2(

→
x)) in cylindric coordinates has the com-

ponents Fr(r, ϕ), Fϕ(r, ϕ)

Fr = F1 cos(ϕ) + F2 sin(ϕ),

Fϕ = −F1 sin(ϕ) + F2 cos(ϕ).

If function Φ(r) depends on r only, then after Fourier transformation
Φ(k) depends on k =

p
k21 + k22 only.

Φ(k1, k2) = (2π)
−1
Z Z +∞

−∞
dx1dx2 exp[i(k1x1 + k2x2)]Φ(r). (59)

After the definition k1x1 + k2x2 = kr cos θ we get dx1dx2 = rdrdθ

Φ(k1, k2) = (2π)−1
Z ∞

0
rdr

Z 2π

0
dθ exp[i(kr cos θ)]Φ(r)

=

Z ∞

0
rdrJ0(kr)Φ(r) = Φ(k). (60)

So if potential depends on r, only then the field B3 also depends on r
only

B3(k) = −kβΦ(k).
The electric field.

E1(r, ϕ) = −∂Φ(r)
∂x1

= − ∂r

∂x1

∂Φ(r)

∂r
= −x1

r

∂Φ(r)

∂r
= − cos(ϕ)∂Φ(r)

∂r
,

E2(r, ϕ) = −∂Φ(r)
∂x2

= − ∂r

∂x2

∂Φ(r)

∂r
= −x2

r

∂Φ(r)

∂r
= − sin(ϕ)∂Φ(r)

∂r
,

and in this case

Er = −∂Φ(r)
∂r

,

Eϕ = −E1 sin(ϕ) +E2 cos(ϕ) = 0.

So

| Ψ(s)(r)i =
 Er

Eϕ

B3

 = −
 Er(r)

0
B3(r)

 . (61)

For the currents on the Plane under QHE conditions we have j1(r, ϕ) = σE2
= −σ sin(ϕ)∂Φ(r)∂r ; j2 = σ cos(ϕ)∂Φ(r)∂r ; jr(r) = j1 cos(ϕ) + j2 sin(ϕ) = 0;
jϕ(r) = −j1 sin(ϕ) + j2 cos(ϕ) = −σEr(r), and js(r) = (jr, jϕ) = (0, jϕ(r)).

Thus the localized stable states with rotational symmetry do exist. The
currents circulate around the center of symmetry.
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2.2.2 Rotational symmetry superposition

We can construct rotational symmetry superposition of plane waves. The
circular currents are absent in this case:

Eω
1 (r, ϕ) =

∂

∂x1
b(r) =

x1
r
∂rb(r),

Eω
1 (r, ϕ) = − ∂

∂x2
b(r) = −x2

r
∂rb(r),

where b(r) is a function of r. By using (58) one obtains

Eω
r (r, ϕ) = Eω

1 (r, ϕ) cos(ϕ) +Eω
2 (r, ϕ) sin(ϕ) = 0. (62)

For circular currents we get

jωϕ = −jω1 sin(ϕ) + jω2 cos(ϕ) = (63)

= σ(−Eω
2 sin(ϕ)−Eω

1 cos(ϕ)) = 0.

Thus these solutions could not change the existence of a stable localized
object with rotational symmetry in QHE medium. Only radial currents and
circular component of electrical field exist for rotational symmetry superpo-
sition of plane solutions with the (ω2 = k2) dispersion relation.

2.2.3 Time evolution

The plane wave solutions give the basis for decomposition for any time
dependent solution of Maxwell equations in QHE-medium with zero free
field terms. Any solution of effective Maxwell equations in Case I is

| Ψ(t, x1, x2)i =| Ψs(x1, x2)i+
+ | Ψω

+(t, x1, x2)i+ | Ψω
−(t, x1, x2)i = (64)

=| Ψs(x1, x2)i+

+

Z
dk1dk2 exp(−ik1x1 − ik2x2)∗

{exp(ikt)
 −k2

k
k1
k
1

B+(k1, k2)+

+exp(−ikt)
 k2

k

−k1
k
1

B−(k1, k2)}
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Now we consider the Case I when the influence of polaritation currents
is taken into account. We try to discuss how the polarization currents can
change the properties of solutions of Maxwell equations in QHE medium.

For rotational symmetry superposition of plane waves with polarization
currents, the circular part of currents is nonzero

jpϕ = −jp1 sin(ϕ) + jp2 cos(ϕ) = (65)

σ(−(Ep
2 +

1

ωc
∂tE

p
1) sin(ϕ) + (−Ep

1 +
1

ωc
∂tE

p
2) cos(ϕ)).

Finally, we get

jpϕ(r) =
∂I(r)

∂r
, (66)

where in the Fourier space

I(t, k) = exp(iωp(k)t)
σ

d(k)
(Λ(k)− ω2p(k)

ωc
(1 +

βΛ(k)

ωc
))Bp(k) (67)

and

I(t, r) =

Z ∞

0
kdkJ0(kr)I(t, k).

2.3 Polarization currents

The Lorentz symmetry, as we have seen, depends crucially on the absence of
diagonal components in the conductivity tensor in QHE. The exactness of
this symmetry, therefore, is limited by the ”degree of vanishing” of σxx. Po-
larization currents, appearing at finite frequencies, may destroy the Lorentz
invariance [13, 16].

Even in the plateau regime, where the real part of σxxvanishes, one
should be aware of an imaginary contribution to the diagonal conductivity,
caused by the polarization currents , which are proportional to the applied
frequency of E(t) . At frequencies approaching the cyclotron frequency, this
imaginary contribution to σxx starts to be comparable with the value of the
Hall conductivity σxy:

σxx = iω
nmc2

H2
= i

ω

ωc
σxy. (68)

The physical origin of Im σxx,can be understood as follows: In crossed
a.c. electric and d.c. magnetic fields the charge carriers experience an
acceleration along the electric field which is proportional to the frequency:

dv

dt
= −iωc [E×H]

H2
(69)
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Figure 3: In crossed a.c. electric and d.c. magnetic fields the charge car-
riers experience an acceleration along the electric field. The corresponding
inertial force: Fin = mdv/dt causes an additional drift velocity: vp =
c[Fin ×H]/eH2 and a corresponding current: jp = nevp = nmc2E/H2 in
the direction of the time varying electric field E(t). This contributes to the
diagonal conductivity.

The corresponding inertial force: Fin = mdv/dt causes an additional drift
velocity: vp = c[Fin ×H]/eH2 and a corresponding current: jp = nevp =
nmc2E/H2 in the direction of the time varying electric field E(t). This
contributes to the diagonal conductivity Eq. (68). This result is visualized
in Fig. 3.

Here

Vdr ∝ eE0
m

Z B

A
eiωtdt∝i ω

ω2c

eE0
m

(70)

which yields Eq. (68). Note that σxx does not depend on the relaxation
time τ and remains finite also in the plateau region, in contrast with the
vanishing diagonal d.c. conductivity. This new term obviously destroys the
Lorentz invariance.

As it was outlined above, the polarization drift under the QHE conditions
can be studied using helicon wave propagation in a superlattice with the 2D
electron gas in the plateau regime [13]. Experiments of this kind may yield
additional information on the exactness of the symmetries discussed above.
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2.3.1 Inclusion of the polarization currents

The effective Maxwell equations (40)—(43) with zero free-part E0 and B0

in QHE medium with polarization currents [13, 16], as described above,
become

−ik1E1 − ik2E2 = 2πf(k)j0(k1, k2); (71)

−iωE1 − ik2B3 = 2πf(k)σ(E2 + i
ω

ωc
E1); (72)

−iωE2 + ik1B3 = 2πf(k)σ(−E1 + i
ω

ωc
E2); (73)

−ik2E1 + ik1E2 − iωB3 = 0. (74)

The equations (72)—(74) have nontrivial solutions if

Det

¯̄̄̄
¯̄̄ ω(1 + βf1(k)

ωc
) −iβf(k) k2

iβf(k) ω(1 + βf1(k)
ωc

) −k1
k2 −k1 ω

¯̄̄̄
¯̄̄ = 0. (75)

The algebraic equation −ωΛ(β/ωc)(Λ2+Λξ−ω2) = 0, where Λ =
p
k2 − ω2,

ξ = (1+β2)ωc
β − ω2β

ωc
, has the following roots:

1) ω = 0, which gives the static solutions;
2) ω2 = k2, which gives the trivial plane wave solutions for the trans-

verse waves propagating with the light velocity c even in the medium with
polarization currents;

3) a new type of solutions arises when Λ = − ξ
2(1−

q
1 + 4ω2

ξ2
).

In the region where (ω/ωc) << 1 in first approximation we get Λp =
β ω2

ωc(1+β
2)
. This solution gives the following dispersion relation: ω2 = k2(1−

k2( β
ωc(1+β

2)
)2) or

ω = ±ωp = ±k(1− k2

2
(

β

ωc(1 + β2)
)2). (76)

The wave polarization is:
−→
E ⊥ −→B ; −→B ⊥ −→k ; cos(−→E ∧ −→k ) = kβΛ1d .
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2.3.2 Evolution of rotational symmetry fluctuation

Let at the initial moment t = 0 the local fluctuation of circular currents
jpϕ = δjpϕ(r) and corresponding fluctuation of magnetic field Bp(r) appear.
Then in the presence of polarization currents the dispersion is the reason for
spreading of fluctuation at large time. For any smooth localized perturbation
with finite energy

En = 1

2

ZZ
(E21 +E22 +B23)dx1dx2

satisfying the conditionZZ
Bp2
± (x1, x2)dk1dk2 <∞. (77)

It is well known that any function such that condition (77) is valid can
be approximated with any accuracy by a finite sum of Gauss packets [30].

The time behavior for initial Gauss perturbation can be calculated di-
rectly. Using this method by direct evaluation, it is easy to show that at
very large time when t→∞ the time depended part of fluctuation goes to
0 on any finite part of the plane at least as O(1/t2) (for dispersion relation
ω2 ' k2). So the existence of polarization currents changes the picture of
existence of stable objects in QHE medium.

If, for example,

Bp(t = 0, r) =
b

2πa2
exp(−r2/2a2) (78)

then at the moment t one gets

Bp(t, r) = 2π

Z ∞

0
k cos(kt)J0(kr)b exp(−k2a2/2)dk. (79)

3 Dimensionality and irreversibility

3.1 Adiabatic invariants

While the quantum motion of an electron in a magnetic field is described
by notion of Landau levels, we will remind here some of the basic connec-
tions between adiabatic invariants in classical mechanics and energy levels
in quantum physics.
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Since the transverse motion of a charge particle in a constant magnetic
field is periodic, the associated action integral [31—33]

J⊥ =
1

2π

I
Pg⊥dl (80)

(where Pg is the canonical momentum and dl a directed line element along
the circular path, and integration is over a complete circle) is a constant of
motion and, most importantly, an adiabatic invariant, that remains constant
under slow variation of external parameters, such as magnetic field of an
RF wave with a frequency lower than the cyclotron frequency of electrons
ω ¿ ωc. Evaluation of the integral in Eq. (80) results in the relation

J⊥ =
mv2⊥0
2ωc

=
E⊥(t)
ωc(t)

'const(t). (81)

Here E⊥ is the kinetic energy of the motion in xy-plane.
For what follows it is useful to connect J⊥ with the following physical

properties. The Angular Momentum:

Lz = [r×Pg]z = −
mV 2⊥0
2ωc

− J⊥signωc

is a constant of motion and also an adiabatic invariant. In the case of
electron motion in a constant magnetic field aligned along the uz direction,
ωc < 0 and Lz =

mV 2
⊥0

2|ωc| = J⊥. The Orbital Magnetic Moment :

µz =
³
− e

m

´ mV 2⊥0
2ωc

= − e

m
J⊥signωc =

e

m
Lz

is also a constant of motion and an adiabatic invariant.

3.1.1 Quasiclassical quantization

The motion of a charge in a magnetic field is periodic in the plane per-
pendicular to the field and, hence, can be quantized by using the standard
Bohr-Sommerfeld quantization condition which after the Peierls substitution
p→ p−e

cA yields [34, 35]I ³
mv − e

c
A
´
· dr = (n+ γ)h (82)

where the vector potential A is related to the magnetic field by

B =∇×A. (83)
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We can take γ = 1
2 as is the case in the original Bohr-Sommerfeld quantiza-

tion rule, but its real value follows from an exact solution of the Schrödinger
equation.

To calculate the integrals in Eq. (82), we take into account that in the
plane perpendicular to the magnetic field the classical orbit of a charged
particle is a circumference of the Larmor radius ρL along which the particle
moves with the velocity | v |=ωc ρL. ThenI

A · dr =
Z
[∇×A] · n̂ds = πρ2LB,

I
mv · dr = 2πρ2L

eB

c
.

It is easy to see that the Larmor radius ρL,n is quantized, i.e. takes a discrete
set of values depending on the integer n :

ρL,n =

s
2~
mΩ

µ
n+

1

2

¶
. (84)

In the quasiclassical limit under consideration (i.e., for nÀ 1), the Larmor
orbit size depends both on the magnetic field strength and the quantum
number n. This dependence is given by the relation ρL,n∝

p
n
B .Formally,

small values of the quantum number n are beyond the scope of the quasi-
classical approximation. On the other hand, it is known that in the case of
harmonic oscillator the Bohr-Sommerfeld quantization rule gives an exact
formula for the energy spectrum. At n = 0 (i.e. in the extreme quantum
limit) the Larmor orbit radius becomes equal to:

ρL,0 =

r
c~
eB
≡
r
Φ0
2πB

.

In this consideration two fundamental quantities have appeared: the
magnetic flux quantum Φ0 = hc/e which depends only on the world con-

stants and the magnetic length LH =
q

c~
eB .

Let us turn to our problem of the energy spectrum calculation.Consider
the above quantization in the momentum p-space. The classical equation of
motion yields

dp

dt
=

e

c

·
B× dr

dt

¸
. (85)

One can see from this equation that: (i) the electron orbit in the p-space
is similar to that in the real space (in x − y plane, when field is directed
along the z−axis, (ii) in the p-space the orbit is scaled by the factor eB/c,
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and (iii) the orbit is rotated by φ = π/2. Integrating the above equation of
motion we obtain:

pn =
eB

c
ρL,n =

s
2m~ωc

µ
n+

1

2

¶
.

Quantization of the orbit radius means also quantization of the mo-
mentum p which, in turn, implies quantization of the kinetic energy of the
particle. For the quadratic dispersion relation

En(pz) = ~ωc
µ
n+

1

2

¶
+

p2z
2m

. (86)

The above quantization rule can be easily generalized to the case of an
arbitrary electron dispersion which is the usual case in the crystal solids like
metals and semiconductors. The quantization of the Sp(E) is known in the
literature as the Lifshitz-Onsager quantization rule. The Lifshitz-Onsager
quantization rule is a direct consequence of the commutation rules between
the momentum components p̂α = (~/i)∂/∂xα+(e/c)Aα in the external mag-
netic field B directed along the z-axes of the Cartesian coordinate system:

[p̂x, p̂y] =
e~
c
B, [p̂y, p̂z] = [p̂x, p̂z] = 0 (87)

(where Aα is the vector-potential). These equations mean that the mo-
mentum p̂x and the coordinate q̂x = cp̂y/eB satisfy the commutation rule
[p̂x, q̂x] = ~/i so that the quasiclassical quantization rule holdsI

pxdqx = 2π~(n+ γ). (88)

It follows also from the Lifshitz-Onsager quantization rule that the integralH
pxdpy = Sp(E, pz) equals to the cross-section of the Fermi surface by the

plane pz = const :

S(E, pz) =
2π~eB

c
(n+ γ). (89)

This is used intensively in the de Haas—van Alphen studies of the Fermi
surfaces in metals.

3.2 Alfven cycle

One of the most instructive applications of adiabatic invariance of the orbital
magnetic moment of an electron in a magnetic field is the Alfven mechanism
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Figure 4: The magnetic field variation B (t) corresponding to the Basic
Irreversible Cycle (BIC). Here δ ≡ t2− t1 = t4− t3 and ∆ ≡ t3− t2 = t5− t4.
It is assumed that 2π

ωc
¿ δ ¿ τ ¿ ∆, where τ is the time for the energy

equipartition between Ex,y and Ez.

of the energy transfer from varying in time external magnetic field to ensem-
ble of electrons. This mechanism was studied in connection with acceleration
of cosmic particles (magnetic pumping [32]), and in solid state (magnetovis-
cous damping of helicons and spin waves [36]). We shall illustrate here the
main ideas of magnetic pumping mechanism using a schematic construction
in the momentum space of electrons under periodically varying classically
strong (ωcτ À 1) magnetic field where τ is a relaxation time.

Consider the following form of a magnetic field variation (Fig. 4).

B(t) = B0[1 + b(t)], b(t)¿ 1 (90)

with a period defined by

db

dt
=

¯̄̄̄
¯̄̄̄ α if t1 < t < t2
0 if t2 < t < t3
−α if t3 < t < t4
0 if t4 < t < t5

¯̄̄̄
¯̄̄̄ (91)

here α ≡ db/dt. As it was outlined above, an electron in a homogeneous
magnetic field possesses an adiabatic invariant:

I =
E⊥(t)
B(t)

'const(t) (92)

where E⊥ is the kinetic energy of the motion in xy-plane. It follows from
Eq. (92) that E⊥(t) is proportional to B(t), i.e. a periodic variation in B(t)
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Figure 5: During the time interval t1 ⇒ t2 the field pumps the energy into
E⊥ faster than the collisions couple the oscillatory and translation degrees
of freedom (the vertical line). During the time interval t2 ⇒ t3 the collisions
restore the equipartition, i.e. some part of the energy is transferred to Ez,
and the system returns to equilibrium, point t3. During the time interval
t3 ⇒ t4 only part of the energy, stored in E⊥ while the field was growing, is
returned to the field.

yields a periodic variation in E⊥(t) provided the frequency ω of the applied
field is smaller than the cyclotron frequency. Since the kinetic energy along
the field Ez is field independent, the total energy variation of a single electron
over a period of the field variation average to zero

h∆E⊥(t)iT = 0 (93)

In an electron ensemble, however, due to the equipartition (the energies,
stored in perpendicular and parallel to the field electron motion, are peri-
odically restored due to collisions) there is a net energy transfer from the
varying in time magnetic field to the electrons. This can be demonstrated
in a following way.

Let us denote:δ ≡ t2− t1 = t4− t3 and ∆ ≡ t3− t2 = t5− t4. We assume
that 2π

ωc
¿ δ ¿ τ ¿ ∆, where τ is the time for the energy equipartition

between Ex,y and Ez.
These inequalities and Fig. 4 have the following physical meaning. The

field is varying in time fast enough: δ ¿ τ , so that collisions are not efficient
in this time interval. Therefore the translational (along the z- axis) motion
is decoupled from the oscillatory (in xy-plane) degrees of freedom during
the time intervals t1⇒t2 and t3⇒t4. The inequality 2π/ωc ¿ δ assures the
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adiabatic invariance of the orbital moment. Therefore during these time
intervals E⊥(t) is varying proportionally to the field variations H(t) while
Ez is constant. The inequality ∆À τ guarantees that the collisions will be
effective and the equipartition in the system will be restored during the time
intervals t2⇒t3 and t4 ⇒ t5.

3.3 Magnetic billiard with dissipation

In [33, 37] it is shown that such a process in the momentum space of the
electron ensemble is irreversible. Indeed, the initial energy gain, ’hidden’
in the parallel motion, will be redistributed, finally, between E⊥ and Ez
during the time interval t4⇒ t5 . Therefore, the temperature of the electron
ensemble will grow: T (t5) > T (t1) . This is a typical irreversible process,
resulting in the magnetoviscosity of the three-dimensional electron gas under
a strong magnetic field.

The two-dimensional limit corresponds to the trajectory 1⇒ 2⇒ 1, and
the energy of a 2DEG at the end of the cycle equals to its energy at the
beginning.

In two-dimensional electron system, therefore, we encounter a paradox:
it turns to be reversible under a periodic external force. This obviously
contradicts the basic laws of statistical physics: no macroscopic system is
reversible [39].

The two-dimensional electron sytem under external magnetic field is a
macroscopic, however reversible system independent whether the quantum
mechanical limit, well separated Landau levels, is achieved.

4 Helicon waves

4.1 Isotropic model

Let us turn now to possible condensed matter realisations of these general
ideas using the electromagnetic mode which has most of it energy in the
magnetic field wave component: the helicons [33, 40—45].

Because of a very high refractive index, the group velocity of the helicon
is extremely slow and most of the wave energy is stored in its magnetic
component. This opens a unique possibility for studying the responce of a
dense electron plasmas to temporal and spatial variations of magnetic fields.

Qualitatively, the helicon propagation can be described as follows [44].
When the mean free path of electrons is sufficiently large and the frequency
ω of the wave is low enough, the electrons affected by the Lorentz force
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− |e| [v×B0] would drift in the direction perpendicular to the plane formed
by the uniform magnetic field B0 and the electric field E of the wave. The
current j created by such a drift is in fact a Hall current. It is perpendicular
to the electric field E of the wave and causes no dissipation. Consequently,
the electromagnetic energy is conserved and in the absence of collisions the
wave does not attenuate. The transverse current that generate a time depen-
dent magnetic field is sufficient to maintain self-sustaining oscillations. It is
essentially an RF Hall effect. The helicon is therefore a low-lying circularly
polarized magnetic excitation in an electron system placed under classically
strong magnetic field.

In the collisionless limiting case τ →∞ the helicon dispersion relation is
[44]: ω = ωcc2

ω2p
k2 (ωp is the plasma frequency) and its phase velocity is very

low compared to the light velocity: vHph = c
√
ωωc
ωp

. The helicon frequencies in
metals [42] and doped semiconductors are small compared to the cyclotron
and plasma frequencies ωc and ωp. While in vacuum a usual electromagnetic
wave has a magnetic field B ∼ E/c, in a helicon wave BH ∼ E/vHph À E/c.
Hence, the field of the helicon wave is mainly magnetic.

4.2 Non-locality and temporal dispersion

A rich physics is contained in peculiarities of the helicon dispersion and
damping due to the non-locality effects [44] and temporal dispersion [33, 36].
Two limiting cases (ωτ À 1 and ωτ ¿ 1) of the helicon wave propagation
are well understood and calculated in the framework of the kinetic theory.

a) ωτ ¿ 1: the local non-dispersive collisional damping [41]: D ∝
(ωcτp)

−1. This is just a collisional damping due to elastic scattering of
electrons.

b) ωτ À 1: the non-local magnetic Landau damping [43, 44], which is
characterised by a linear in k damping factor: D = Imω

Reω ∝ kRL sin∆ , RL

is the Larmor radius, τp the momentum relaxation time.
Its physical meaning can be understood as follows [44]. In the case of

the oblique propagation the helicon wave is not purely transverse, i.e. the
external magnetic field is modulated by z-component of the wave magnetic
field, which results in two specific mechanisms of damping. The standard
Landau damping [31] is due to the small longitudinal component of the
wave electric field and is negligibly small since the helicon phase velocity
is much less than the Fermi velocity of carriers. The essential damping of
obliquely propagating helicons is connected with a considerable magnetic
field of the wave. The variable magnetic field BH being added to the static
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magnetic field B0 forms a periodic magnetic field acting on the electron

magnetic moment µm =
mv2⊥
2B0

with a force: FH = e [v×B]z ' µm
∂Bz

∂z
. As

a result, the gyrating particle is interacting with the variable magnetic field
BHz of the helicon which periodically adds to and subtracts from the static
magnetic field B0.This interaction is especially strong when the velocity of
the particle is close to the velocity of the moving magnetic mirror along the
Z direction vz ' ω

kz
.

Similar to the standart Landau damping, the particles with the velocity
just less than ω/kz will be accelerated by the magnetic mirror and will
extract the energy from the wave. The particles with vz slightly greater
than ω/kz will be slowed down. Since in thermal equilibrium ∂f0/∂v < 0,
there are more slowly moving particles than the fast ones. Consequently,
the interaction will result in the magnetic Landau damping of the helicon
wave.

c) In the intermediate region (ωτ ' 1), the damping factor has a Loren-
zian shape, centred at ω ' τp [36]:

D '
µ
noeF
H2
o

¶
(ωτp)

³
(1 + ωτp)

2
´−1

(ωτp ' 1) (94)

where no is the electron density, eF is the Fermi energy, Ho is the exter-
nal magnetic field. This damping mechanism is the manifestation of the
magnetoviscous damping [36], which can be understood as follows.

While the time dependent energy variation of a single electron is aver-
aged to zero, due to the adiabatic invariance of its classical orbital moment,
an ensemble of 3D electrons will gain the energy stored in the wave, due
to the energy transfer from the time-dependent part of the magnetic field
to the electron subsystem, causing the magnetoviscosity described above.
This mechanism is most effective [32, 36] when the frequency of the field is
comparable with the momentum collisional frequency of the electrons.

The magnetic Landau damping and the magnetoviscous damping of an
electromagnetic wave is caused by two different groups of electrons. There-
fore, for metals with a non-spherical Fermi surface, in a geometry with the
’resonant’ electrons occupying the regions on the Fermi surface with low den-
sity of states, the magnetoviscous damping may prevail over the magnetic
Landau damping.
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4.3 Quantum Hall helicon mode

Let us discuss now the helicon wave propagation in the extreme anisotropic
case, i.e. the case of two-dimensional electron layers under strong magnetic
field [13]. These could be semiconductor superlattices or multi-quantum
wells, where the conventional QHE [1] caused by the pinning of the chemi-
cal potential by impurities in the energy gap between two adjacent Landau
levels, can occur. Another interesting possibility could be the dense elec-
tron superlattices where the diamagnetic phase transition may result in the
Ideally Conducting Phases (ICP), with the trapping of the chemical poten-
tial within the Landau gaps resulting in lowering of the total energy of the
2DEG system [46].

Experimentally, in the GaAs/AlGaAs heterostructure in magnetic fields
of about 8T, at a temperature of 1.23K, the upper limit on the electron scat-
tering time is estimated as 1.5x10−3sec. This means that the high frequency
(ωτ > 1) regime, which in conventional semiconductors starts only in the
far infrared, may start at kilohertz frequencies in the QHE.

Under the quantum Hall effect conditions, assuming zero conductance
in z-direction: σxz = σzx = σyz = σzy = σzz= 0 and isotropy in the
other two directions: σxx = σyy and σxy = −σyx, we are left with only two
independent components of the conductivity tensor: σxy and σxx. Assuming
a model superlattice with 2DEG layers of width a, separated by insulating
layers of width b with a dielectric constant �0,the wave equation can be
reduced to the form [13]

E+ + (
ω

c
)2�−E+ = 0 (95)

where E+= Ex+ iEy and � = �xx- i�xy. A standard procedure then yields
the Penney-Kronig like dispersion relation.

Assuming now that Re σ2dxy' (nsec)/H; Im σxy' Re σxx' 0; Im σxx'σxy
(ω/ωc), we obtain, in the frequency regime:

ω < ωc < ωp : k
2
1 =

ω

c2
4πσ3dxy

µ
1 +

ω

ωc

¶
which is the standard 3D-helicon dispersion with σ3dxy =

1
dσ

2d
xy.

The obtained transcendental dispersion equation can be reduced, in the
long wave-length limit kd ¿1, to a simple algebraic one:

ω2�o + 4πασxyω

µ
1 +

ω

ωc

¶
− c2k2 = 0 (96)

464



where α = a/d < 1. At very low frequencies, the term ω
ωc
in brackets can

be neglected, and one gets the following, helicon-like, solution:

ω =
c2k2

4πασxy
=

c2k2h

αnF e2
.

Figure 6: Magnetic field dependence of a quantum helicon mode in a multi-
quantum-well structure with the electrons in a QHE state.

The second equality assumes that we are in the QHE regime, namely,
that there are nF completely filled Landau levels and that the Fermi energy
is in a magnetic energy gap.

In Fig. 6, the numerical solutions are presented for a GaAs/AlxGa1−xAs
supelattice wth the following parameters: the electron concentration is no =
5 × 1011cm−2, the GaAs layers are 100 Å thick, the AlxGa1−xAs barriers
are 400 Å thick. The number of 2DEG layers in a superlattice: a) N=300;
b) N=500; c) N=1000 [13].

At higher frequencies the plateaus are distorted. This is caused by the
usual displacement currents and by the polarization currents, arising from
the nonvanishing imaginary part of diagonal conductivity [16], as it was
discussed earlier.
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