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Abstract

Basic properties of a two-dimensional electron gas with spatially
varying carrier concentration in external magnetic fields are reviewed.
The two main problems: modification of galvanomagnetic coefficients
due to random fluctuations of equilibrium concentration and the con-
centration gradient created by the Lorenz force in the Hall direction —
are considered for weak, classically strong, and quantizing magnetic
fields. The screening of concentration non-uniformities under the quan-
tum Hall conditions are discussed separately.

PACS: 75.47.-m, 71.70.Di

1 Introduction

This paper represents a review devoted to the influence of sample inhomo-
geneity on a wide class of transport phenomena in a two-dimensional (2D)
electron gas in a low, high and quantized magnetic field H perpendicular
to its plane. Such inhomogeneities are a privilege of a very wide class of
semiconducting materials including strongly compensated, irradiated, poly-
crystalline, amorphous and some other [1]. All of them can be described by
a general model of a semiconductor with energy band modulated by some
random potential V (x, y) (we assume the 2D gas to occupy the plane z = 0).
Such an approach will be used here as well.
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2 Classical magnetic field

2.1 Conductivity and Hall effect of non-uniform samples

This subsection is devoted to the standard transport problem of non-uniform
samples, which can be formulated in the following way. Let us have a 2D
sample with a spatially varying conductivity σ(x, y) provided with macro-
scopic contacts having the size considerably larger that the characteristic
size of inhomogeneities L. In this case, the measured values of effective di-
agonal σxx and non-diagonal (Hall) σxy conductivity, determined as a ratio
of average corresponding components of electric field and current density,
are independent of the size and position of contacts and determined only by
some statistical characteristics of σ(x, y) [1].

To solve this problem exactly, we must find spatial distributions of the
in-plane (2D) electric field E(x, y) and current density j (x, y) by solving the
equation system

div j(x, y) = 0, curlE(x, y) = 0. (1)

In most real cases, spatial variations of σ(x, y) are caused mostly by varia-
tions of the 2D carrier concentration n(x, y), which can be assumed through-
out the whole paper by considering their mobility µ as a spatially-uniform
constant. In this situation, with the help of the well-known current-field
relationship in a magnetic field (see, e.g., [2]):

j =
enµ

1 + β2

h
E− µ

c
E×H

i
, (2)

we can re-write the first of Eqs.(1) as

div {n(x, y) [E(x, y)− βE(x, y)×h]} = 0 (3)

where h is the unit vector in z-direction and β = µH/c is the parameter of
magnetic field strength.

It is impossible to obtain a general analytical solution of Eqs.(1) for an
arbitrary n(x, y), and we analyze this problem separately for the case of low
(β ¿ 1) and high (β À 1) magnetic fields.

2.1.1 Low magnetic field

For low magnetic field, the problem is solved by perturbations in β and
therefore it is useful to begin with a brief description of the unperturbed
state, that is with the general properties of conductivity of inhomogeneous
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samples in the absence of magnetic field. The detailed description of differ-
ent solvable models can be found in [1], and here we restrict ourselves to the
most interesting case of random fluctuations of n(x, y) with a very high am-
plitude, when maximal and minimal local values of n(x, y) differ by at least
several orders of magnitude. It will be always the case for non-degenerate
electrons in a random inhomogeneities potential V (x, y) with the dispersion
∆À kT . In this case conductivity can be described in terms of the so-called
percolation theory (see, e.g., [3, 4]) and is determined by np — carrier con-
centration at the percolation level Vp separating electron energies for which
classical motion of electrons is finite and infinite:

σxx ' enpµ. (4)

Simple considerations [5, 6] show that for a symmetric random 2D po-
tential V (x, y), Vp coincides with the mean value V (x, y). We emphasize
that this is a specific feature of 2D case, and for a 3D random potential, Vp
lies essentially below V (x, y), differing from it by the value of order ∆ (e.g.,
for a Gaussian 3D potential Vp = V (x, y)− 0.67∆). Note that for both 2D
and 3D-cases the percolation concentration np is essentially less than the
average concentration in a sample n(x, y).

Now we return to the perturbation calculation of conductivity in the
external magnetic field. The diagonal component of conductivity σxx is an
even function of magnetic field and in the first order in β remain unchanged
and given by Eq. (4). Much more interesting is the problem of σxy, which
is absent at H = 0 and is determined by the linear in β terms. We denote
by E0(x, y) and j0(x, y) the electric field and current density distributions in
the absence of magnetic field. In low magnetic field they acquire additions
E1(x, y) and j1(x, y) linear in β, related by the expression

j1(x, y) = eµn(x, y) [E1(x, y)− βE0(x, y)× h] (5)

and meeting the equations

div j1(x, y) = 0, curlE1(x, y) = 0. (6)

The boundary conditions for Eqs.(6) may be stated as the absence of current
through the Hall contacts. After E1 is found, the Hall voltage may be
calculated as UH =

R
E1dl where the integration path goes from one Hall

contact to the other.
In a homogeneous sample the solution of Eq. (5) and the first of Eq. (6) is

j1 = 0, E1 = βE0 × h. (7)
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Figure 1: The relaxation time and mobility in a surface channel of MOS-
transistor measured by the cyclotron resonance method [15]. The full line
corresponds to the ”Hall mobility” µH .

If this solution were correct also for an inhomogeneous sample, the Hall
voltage could be determined by the formula [8]:

UH =
β

eµ

Z
[j0(x, y)× h] dl

n(x, y)
. (8)

However, the solution Eq. (7) is, generally speaking, incorrect for the inho-
mogeneous case, since it does not satisfy the second of Eq. (6). Note that in
this case the integral in Eq. (8) does depend on the integration path. The
latter circumstance reflects the well-known fact that in an inhomogeneous
semiconductor the Lorenz force and the Hall field no longer locally compen-
sate each other, so that the vortex current arise which were not taken into
account in Eqs.(6). They flow near the boundaries between the regions with
different carrier concentrations (Fig. 1), changing considerably the potential
distribution in the high-resistive region and much less in the low-resistive
one.

These facts lead to the following conclusion: the neglect of vortex cur-
rents and calculation of the Hall voltage by Eq. (8) is a good approximation
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if the integration path in Eq. (8) is chosen so as to follow the way of minimal
resistance, i.e. the percolation path in the Hall direction.

If the current density in the absence of magnetic field j0 were uniform,
then one would obtain from Eq. (8) UH = βj0b/σ (b is the sample width).
In this case, according to Eq. (4), the Hall coefficient RH = UH/j0Hb
would be RH ' (npec)−1. But in fact, j0(x, y) is strongly non-uniform. It is
smaller in regions with low carrier concentration than in regions with high
concentration. Due to this, the latter make a greater contribution to the
integral for UH than it would be at j0 = const(r). As a result, the effective
carrier concentration determined from the Hall effect: nH = (ecRH)

−1 in
inhomogeneous samples exceeds the concentration at the percolation level
nc determining the conductivity:

nH > np. (9)

This important statement has a general character being valid for 3D inho-
mogeneities as well [1].

It is interesting to compare the results presented above for an arbitrary
non-uniformity with the particular case of a two-phase metal-dielectric mix-
ture where the problem allows an exact solution. It was shown more than
half a century ago [7] that in 2D case dielectric inclusions does not change
the Hall coefficient. The effect is due to the absence of vortex currents which
cannot flow through dielectric. This means that nH is exactly equal to nm
- the carrier concentration in the metallic phase. On the other hand, dielec-
tric inclusions definitely decrease the sample conductivity resulting in the
decrease of effective conductivity concentration below nm, which again is in
agreement with Eq. (9).

The inequality Eq. (9) has a very serious consequence related to the in-
terpretation of experimental galvanomagnetic data in inhomogeneous sam-
ples. It is well known that in uniform samples the product cσxxRH ≡ µH
called Hall mobility is equal to the real drift mobility µ (sometimes with an
additional factor not much differing from 1) and represents the most simple
and popular method of mobility measurements. We see from Eq. (9) that
in non-uniform samples µH is no longer equal to the carrier mobility and
always

µH < µ. (10)

For very large ∆ — inhomogeneity amplitude, nH and np and, hence, µH and
µ may differ by orders of magnitude. If we accept that for non-degenerate
electrons spatial fluctuations of concentration are determined by the factor
exp(∆/kT ), then it becomes evident that the difference between nH and
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np and, hence, the ratio µ/µH increases with the temperature decrease.
Therefore, for a fixed inhomogeneity amplitude the µH value will sharply
drop at low temperature. Such anomalous temperature dependence of µH
has nothing in common with a weak temperature dependence of µ different
for different scattering mechanisms.

As we have already mentioned, the anomalous temperature dependence
of ”Hall mobility” µH is a phenomenon realized in both 3D and 2D electron
systems. There exist a very large number of experimental works where this
effect was observed (partially cited in [1]) most of which were performed
on bulk 3D semiconductor samples. It has a simple explanation. Inhomo-
geneities are usually observed in heavily doped and strongly compensated,
irradiated, or polycrystalline semiconductors [1], in other words, in materials
with high concentration of defects or impurities and, hence, with relatively
low mobility. On the other hand, for observation of size quantization in
2D electron gas the quantization energy is required to exceed the energy
uncertainty caused by scattering, which is impossible at very low carrier
mobility. Thus many structures containing inhomogeneities do not satisfy
the conditions of two-dimensionality and hence are not used for detailed
investigations.

Nevertheless, we can point at a number of experimental observations of
the described µH anomaly in 2D systems, first of all, in inverse channels of
Si MOS-transistors (see, e.g., [9—13]). The effect always strongly depended
on the gate voltage Vg disappearing at large Vg corresponding to a strong
inversion. This is easily explained by the fact that the growing number
of inversion carriers, on the one hand, screened inhomogeneities decreas-
ing their amplitude and, on the other hand, raised the Fermi level above
the maxima of potential fluctuations making their influence negligible. It
should be noted that the strong temperature and Vg dependence of µH in
many cases could be also explained by an alternative concept [14] connecting
this effect with the Mott-Anderson transition, or localization of single elec-
trons in microscopic potential fluctuations. Of course, these processes may
take place and in some cases decrease the real mobility in MOS channels.
But the conductivity at the transition point (gate voltage corresponding to
the offset of exponential temperature dependence of µH) varied in experi-
ments and differed considerably from the universal Mott value of minimal
metallic conductivity 0.07e2/~ [15]. This fact contradicted the microscopic
localization concept and led the authors of [16] to the conclusion about the
important role of large-scale potential fluctuations, that is, in fact, to the
model discussed above.

The most impressive argument in favour of this model is the result of
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high-frequency measurements [17] shown in Fig. 1. It is seen that the sharp
decrease of µH at low Vg (accompanied by anomalous temperature depen-
dence) is not reproduced in the behaviour of high-frequency mobility, which
means that it is not connected with the properties of a real mobility and is
rather due to the inhomogeneity effect.

To conclude, we mention briefly some special model experiments [18] in
MOS structures with a multi-connected electrode of a chessboard shape. The
potential of the ”black” and ”white” checks of the ”chessboard” and, hence,
the carrier concentration underneath could be varied independently. There-
fore, the degree of a surface channel inhomogeneity was manually operated.
The conductivity and Hall effect were measured at different inhomogene-
ity levels. The results confirm the basic conclusion that any concentration
inhomogeneity decreases the experimentally measured µH which in an inho-
mogeneous sample have nothing in common with the real surface mobility
determined by the scattering effects in the inversion channel.

So far in this section we have considered linear in β effects determining
the Hall effect and non-diagonal conductivity component σxy. Quadratic in
β terms are responsible for the changes of σxx in magnetic field (magnetore-
sistance). We remind that in uniform samples magnetoresistance is due to
the dependence of momentum relaxation time τ on the energy of electrons
and can be written as

−∆σxx
σxx

=
∆ρ

ρ0
= Bβ2 (11)

where ρ0 is the zero-field resistivity of the sample, ∆ρ is its change is mag-
netic field and numerical factor B depends on the scattering mechanism. It
is equal to 2.155 for impurity scattering, to 0.38 for deformation acoustic
phonon scattering and vanishes if τ is independent of energy.

To find ∆σxx in non-uniform samples, we take into account that at very
large amplitude of inhomogeneity the sample resistance is determined by
saddle points of the random potential V (x, y) with the energy close to the
percolation level Vp. It is natural to suppose that the magnetoresistance will
be associated with the field dependence of the saddle point resistances. Let
us calculate the magnetoresistance of a single saddle point, which is a point
where ∂V/∂ξ = 0 (ξ = x, y), whereas two second derivatives ∂2V/∂ξ2 have
different signs. The concentration distribution near such a point is:

n(x, y) = n0 exp

µ
x2

l2x
− y2

l2y

¶
(12)

where l2ξ = 2kT
¯̄̄
∂2V
∂ξ2

¯̄̄−1
0

, index 0 refers to the saddle point and the x-axis
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is chosen along the current flow. The external voltage U applied along
this axis causes some distribution of potential ϕ(x, y) and current density
j(x, y) around the saddle point. To determine them, we shall use a standard
expression for current distribution in a magnetic field, which in the lowest
orders in β has the form

j(x, y) = eµn(x, y)
£−Oϕ(x, y) ¡1− β2

¢
+ βOϕ(x, y)× h¤ . (13)

(By retaining only the first-order terms, Eq. (13) gives the above-used
expression Eq. (5)).

For the expressions Eqs.(12),(13), the basic equation div j = 0 acquires
the form

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+
2x

l2x

∂ϕ

∂x
− 2y

l2y

∂ϕ

∂y
+
2x

l2x
β
∂ϕ

∂y
+
2y

l2y
β
∂ϕ

∂x
= 0. (14)

We must solve this equation with the boundary condition ϕ(x =∞)−ϕ(x =
−∞) = U. The solution gives

ϕ(x, y) =
U√
π

x/lxZ
−∞

exp(−t2)dt+ Uβylx√
π(l2x + l2y)

exp

µ
−x

2

l2x

¶

+
Uβ2xlx(l

2
y − 2y2)

2
√
π(l2x + l2y)

2
exp

µ
−x

2

l2x

¶
. (15)

Substitution of Eq. (12) and Eq. (15) into Eq. (13 ), followed by integration
over y, gives us the full current through the saddle point Jx and hence the
resistance R = U/Jx. More thorough analysis of the problem was performed
in [1, 19]. It takes into account the fact that, due to the dependence of carrier
mobility µ on their energy E (which usually has a power character: µ ∼ Eα),
the parameter β is different for different carriers and additional averaging
with the Boltzmann distribution function for carriers is required. Precise
calculations result in the formula similar to Eq. (15) where the second and
the third terms have additional numerical factors

a1 =
3
√
πΓ(2α+ 5/2)

4Γ2(α+ 5/2)
and a2 =

9πΓ(3α+ 5/2)

16Γ2(α+ 5/2)
.

The final result of calculations is the formula for a relative magnetore-
sistance of a saddle point

∆R

R
= β2

µ
a2 − a21

2

¶
. (16)
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This formula does not depend on the saddle point parameters n0, lx, ly and,
therefore, it applies to all saddles. Hence, it follows that the magnetoresis-
tance of a whole sample is also described by Eq. (16). By comparing Eq.
(11) and Eq. (16), we conclude immediately that in strongly inhomogeneous

samples the magnetoresistance coefficient B =
³
a2 − a21

2

´
.

The most important conclusion consists in the fact that, contrary to
uniform samples, magnetoresistance exists even in the absence of energy
dependence of the scattering time. For α = 0, when in uniform samples
B = 0, Eq. ( 16) immediately gives B = 0.5. Such a magnetoresistance, usu-
ally called ”geometric” to distinguish it from the standard, ”physical” one,
has a simple explanation. Any magnetoresistance occurs when the Lorenz
force and the Hall electric field influencing moving carriers, compensate each
other only on average but not at the level of each individual carrier so that
their trajectories become slightly bent in one or another side decreasing the
total current. For the ”physical” mechanism it is due to the dispersion of
the Hall angle for carriers with different energy while for the ”geometric”
mechanism it is due to shorting of the Hall field by low-resistive regions of
an inhomogeneous sample. For α 6= 0 both mechanisms act together so that
the ”geometric” factor increases B from 2.155 to 4.02 for impurity scattering
and from 0.38 to 1.07 for deformation acoustic phonon scattering.

2.1.2 High magnetic field

We begin with the Hall effect in classically high magnetic field (β À 1) in a
non-uniform sample. We can no longer use the perturbation approach and,
instead of Eq. (5) for the magnetic field-induced addition to the current, we
have the following approximate expression for the whole current

E(x, y) =
β

eµn(x, y)
[j(x, y)× h] (17)

where we have restricted ourselves to the highest order term in β. Requiring
curlE =0,we obtain immediately [20]

j(x, y) · gradn(x, y) = 0. (18)

This means that the current tends to flow along the equipotential lines
of inhomogeneity potential V (x, y). It is interesting that some qualitative
considerations concerning such current behaviour were already put forward
long ago [21] and then used anew in connection with the theory of quantum
Hall effect [22, 23]. We should emphasize that this very important statement

478



concerns only the 2D case and is not correct for 3D inhomogeneities. It
should be noted that the mentioned 2D case does not mean necessarily 2D
electron gas. It may be also a bulk semiconductor where the inhomogeneity
potential does not depend on one of the coordinates (for instance, a system of
parallel dislocations) and the magnetic field is oriented along this coordinate.

For two-phase systems, Eq. (18) means that in high magnetic field nH
is determined by the carrier concentration in the connected phase (in the
2D case, contrary to the 3D one, there is always one connected phase. For
a statistical mixture it will be the phase with a relative volume C > 0.5.
It is worth noting that in a metal-dielectric mixture (and only in it!) this
conclusion is valid also at low fields, as it was mentioned in Sect. 2.1.1.

In semiconductors with a random inhomogeneity potential, the Hall ef-
fect will be determined by the carriers in those sample regions where the
band edge lies in a narrow energy strip near Vp. This means that nH ' np.
From the non-connected regions with both nÀ np and n¿ np, the current
lines are forced out by high magnetic field. As a result, anomalous small
magnitude and strong temperature dependence of the ”Hall mobility” µH ,
typical for inhomogeneous samples in a low magnetic field, should not be ob-
served in a high field. The Hall coefficient must increase with the magnetic
field from RH ' (ecnH)−1 to RH ' (ecnp)−1.

If we want to know not only the Hall coefficient but the magnetoresis-
tance as well, we cannot use Eq. (17) containing only the non-dissipative
term with j ⊥ E and thus unable to describe diagonal (dissipative) conduc-
tivity component σxx. To find it, we use the same approach as in Sect. 2.1.1
considering magnetoresistance of one single saddle point of inhomogeneity
potential Eq. (12) but with Eq. (13) replaced by its high-field analog

j(x, y) = eµn(x, y)
£−Oϕ(x, y)β−2 + β−1Oϕ(x, y)× h¤ (19)

(Eq. (17) corresponds to the last term of this expression). It gives ab-
solutely the same equation for the potential Eq. (14) as in the low-field
case. However, its approximate solution will be different since in Sect. 2.1.1
we found the lowest terms of expansion by β while here, on the contrary, we
are interested in the highest degrees of β.

We assume the solution to have the form

ϕ(ζ, η) = ϕ0(ζ) + exp(−ζ2)
∞X
n=1

βn
X
i,j

α
(n)
ij Hi(ζ)Hj(η) (20)
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where ζ = x/lx, η = y/ly, Hi are the Hermite polynomials and

ϕ0(ζ) =
U√
π

ζZ
−∞

exp(−t2)dt

is the solution in the absence of magnetic field (the first term of Eq. (15)).
Substitution of Eq. (20) into Eq. (14) transforms the latter into a com-

plicated infinite set of algebraic equations. But we do not need to determine
all coefficients α(n)ij . Due to orthogonality of the Hermite polynomials, only
terms with i = 0 and j = 1 will contribute to the total current across the
saddle point

Jx =

√
πeµn0

λβ2
U exp(ζ2)

∞Z
−∞

·
∂ϕ

∂ζ
+ λβ

∂ϕ

∂η

¸
exp(−η2)dη (21)

(λ = lx/ly). Therefore, we restrict ourselves to determination of the above
coefficients. This is not a very difficult procedure [24] , which gives

Jx =

√
πeµn0

λβ2
U

(
1 +

λ2β2

1 + λ

∞X
k=0

(−1)k (2k)!
(k!)2

·
λβ2

(1 + λ2)2

¸k)

=

√
πeµn0

λβ2
U

1 + λ2β2q
(1 + λ2)2 + 4λβ2

 . (22)

A macroscopic sample contains a large number of saddle points and its
equivalent electric scheme is a random network of resistors, each of which
is characterized by a set of parameters: n0, lx, ly. At ∆/kT À 1 the range
of resistor values is determined mainly by n0 fluctuations and, to a lesser
degree, by fluctuations of lx,y. It allows us to average Eq. (22) over lx,y. As
to n0, one sees that the relative magnetoresistance ∆R/R of a saddle point
is n0 -independent and, in average, the same for all saddle points. Therefore,
this quantity determines also the relative magnetoresistance of the sample
as a whole, for β À 1 equal to

∆ρ

ρ0
' 2β. (23)

Thus the magnetoresistance of inhomogeneous semiconductors in strong
magnetic fields is characterized by a qualitatively new phenomenon. Magne-
toresistance at high magnetic fields increases linearly with the field, contrary
to homogeneous samples where ∆ρ/ρ0 saturates at high magnetic fields.
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2.1.3 Extremely high magnetic field

In uniform samples, two limiting cases β ¿ 1 and β À 1 considered above
exhaust all principal possibilities, which can be realized in the absence of
Landau quantization. In non-uniform samples, one more large parameter
emerges, namely, the typical concentration ratio for different saddle points
n0max/n0min. The calculations of Sect. 2.1.2 are valid only if this parameter
is larger than β, or at not very high magnetic fields. In the opposite limit
the magnetic field may cause considerable redistribution of the current along
different saddle points. Due to this redistribution we cannot assume, as
before, the net relative magnetoresistance to be equal to that for a single
saddle point. The situation requires some other approach.

This problem was solved by Dreizin and Dykhne [25]. They elaborated
a special diagrammatic technique for calculation of conductivity in inhomo-
geneous media in extremely high magnetic fields when β is the largest para-
meter of the system. However, their main qualitative result can be obtained
using fairly simple physical considerations, which are reproduced below.

Since the tensors of conductivity and diffusion coefficients are propor-
tional to each other, it is more reasonable to speak about electron diffu-
sion in the constant magnetic field H q z and random electric fields of
inhomogeneities E ∼ ∆/eL, rather than about conductivity. Diffusion in
the xy-plane is strongly suppressed ∼ β−2 by the magnetic field and the
main transport here will be due to the Hall drift with the typical velocity
v ∼ c∆/eHL in random fields. Thus we can imagine the electron motion
as a sequence of random walks where a particle moves with the velocity v
and after covering the distance ∼ L randomly changes its direction. Using
the well-known estimate of the diffusion coefficient D for random walks, we
have

D ∼ vL ∼ c∆

eH
. (24)

It is interesting to note that D depends only on the amplitude but not on
the spatial size of the inhomogeneity potential.

We see that the diffusion coefficient, which is proportional to the diagonal
component of conductivity σxx, is∼ H−1. Since the non-diagonal component
σxy ∼ H−1, we may finally conclude that the resistivity ρxx = σxx/(σ

2
xx +

σ2xy) and, hence, the magnetoresistance do not saturate but grow linearly in
high magnetic fields, similarly to Eq. (23) but with another proportionality
factor. This differs from the case of 3D inhomogeneities where Eq. (23)
remains valid but in the situation described in the present section, ρxx ∼
H2/3 [1, 25].
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2.2 Hall-induced edge charges

So far we have considered galvanomagnetic phenomena in 2D samples with
built-in concentration inhomogeneities, which can be caused by different
technological reasons. However, even ideally uniform samples in the condi-
tions of Hall effect acquire some specific inhomogeneity having a very simple
explanation. The Lorenz force affecting moving carriers in a magnetic field
causes their shift in the Hall direction creating, in turn, the Hall electric
field. As a result, one half of the sample becomes enriched and the other —
depleted by carriers creating a gradient of concentration n and of chemical
potential ζ perpendicular to the current [26]. This effect has a general char-
acter but in bulk samples is usually negligible: the deviations from neutrality
occur only in surface layers with the thickness of order of the screening ra-
dius, and the change in ζ is very small in comparison to the applied voltage.
In 2D samples the situation changes dramatically. We will show that, due
to much weaker screening in low-dimensional systems (see, e.g., [27]), non-
uniformities of carrier density and electric field exist throughout the whole
sample and acquire noticeable values subjected to direct experimental de-
termination.

Let us assume that we apply the external voltage U and pass the current
in x-direction. Our theoretical analysis will be based on the equation

σ0xx

µ
−∂ϕ
∂y
+
1

e

∂ζ

∂y

¶
+ σ0xy

µ
−∂ϕ
∂x

+
1

e

∂ζ

∂x

¶
= 0 (25)

expressing the absence of Hall current jy. The superscript 0 in conductivity
is intended to emphasize the fact that, contrary to the previous sections, we
consider samples with uniform carrier concentration. We will assume that
the sample length in the direction of the current L is much more than the
width b in the Hall direction, which is typical for the samples for Hall mea-
surements. In this case the above-mentioned concentration inhomogeneity
far from the current contacts will depend only on the y-coordinate and we
simplify Eq. (25) by assuming ∂ζ/∂x = 0 and ∂ϕ/∂x = −Ex = U/L =
const(r).

If the carrier density fluctuations n(y)−n0 (n0 is the equilibrium electron
density equal to the non-compensated impurity concentration) are not large,
we can expand ζ in terms of n− n0: dζ/dy = (dζ/dn)0dn/dy ((...)0 means
the value calculated at n = n0) and write Eq. (25) in the form

∂ϕ

∂y
=
1

e

µ
dζ

dn

¶
0

dn

dy
+ βEx. (26)
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We have taken into account that σ0xy = βσ0xx.
To find the potential distribution, Eq. (25) should be complemented

with one more equation connecting ϕ and ζ or, in other words, describing
the screening phenomena in a sample. In 3D systems it is the Poisson
equation with the right side describing the electron charge in terms of ζ. In
2D systems the description of screening phenomena is essentially different
[27]. The electric field created by some charge separation exists in the whole
3D space while the charge of screening electrons is confined to the plane
of 2D gas. That is why the potential is described not by the Poisson, but
by the Laplace equation ∂2ϕ/∂y2 + ∂2ϕ/∂z2 = 0 in the half-space z > 0
above the 2D gas. All the screening phenomena are hidden in the boundary
condition

∂ϕ

∂z
(y, 0) = 2πe [n(y)− n0] . (27)

Assuming ϕ(0, 0) = 0, we obtain by integrating Eq. (26) that

ϕ(y, 0)− βExy =
1

e

µ
dζ

dn

¶
0

[n(y)− n0] (28)

which, after substituting into Eq. (27), given eventually the boundary con-
dition for ϕ:

∂ϕ

∂z
(y, 0) =

½
l−12 [ϕ(y, 0)− βExy] , |y| ≤ b/2;

0, |y| > b/2.
(29)

Here l2 = (dζ/dn)0/(2πe
2) is the 2D screening length. For a degenerate

2D electron gas, l2 is equal to half of the effective Bohr radius aB, and the
expressions Eqs.(28),(29) are valid not only for small but for any ∆n, which
results from the constant density of states in 2D electron gas.

The Laplace equation with the boundary condition Eq. (29) resembles
that of the theory of contact phenomena in 2D electron gas [27] and some
conclusions can be made a priori by analogy. The screening capability
of 2D electrons is much weaker than in the bulk sample and any charge
inhomogeneity will decrease very smoothly with the logarithmic divergence
of the total screening charge. As a result, rather large effects can be observed
even for samples with bÀ l2.

The equation cannot be solved analytically but can be transformed to an
integral equation more convenient for numerical solution. We will operate
in terms of dimensionless units:

ξ = y/l2, η(ξ) =
2πe

βEx
[n(y)− n0], ψ(ξ) =

ϕ(y, 0)

l2βEx
.
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In these units the solution of the Laplace equation with the boundary con-
ditions Eq. (29) is

ψ(ξ) = − 2
π

∞Z
0

sin(λξ) exp(−λz/l2)dλ
λ

b/2l2Z
0

η(ξ0) sin(λξ0)dξ0. (30)

Assuming z = 0 and substituting Eq. (30) into Eq. (29), we obtain

ν(ξ) = − 2
π

∞Z
0

sin(λξ)
dλ

λ

b/2l2Z
0

η(ξ0) sin(λξ0)dξ0 − ξ. (31)

After integration over λ we have the final form of the integral equation:

η(ξ) = − 1
π

b/2l2Z
0

η(ξ0) log
µ

ξ + ξ0

|ξ − ξ0|
¶
dξ0 − ξ. (32)

This equation can be easily solved numerically, which gives us the con-
centration distribution along the Hall direction for 2D stripes of different
widths b. After η(ξ) is found, the potential distribution ψ(ξ) and the Hall
voltage ψ(b/2l2)− ψ(−b/2l2) are determined by Eq. (30). Some of the final
results are shown in Fig. 2 demonstrating the distributions of the electron
concentration and the electrostatic potential in a structure with b = 20l2.
The most remarkable feature here is the non-monotonic character of ψ(ξ)
(that is of ϕ(y, 0)), which means the change of electric field sign near the
sample edges. Noticeable deviations from neutrality are seen at fairly large
distance from the edges. Calculations also show that, contrary to the 3D
case, the difference in electron concentrations at opposite edges does not
saturate at large b, increasing approximately ∼ b1/2. To explain this fact,
we note that far from the sample edge one can neglect the diffusion current
(the first term on the right-hand side of Eq. (26)). In this approximation
the function ψ(ξ) is linear while the charge density diverges near the edge:

η(ξ) ' − 2ξq
b2/l22 − 4ξ2

(33)

(see, e.g., [28]). The diffusion term will provide an effective screening con-
straining the concentration increase at the distance ∼ l2 from the edges. As
a result, the charge density near the edge is of order (b/l2)1/2(βEx/2πe).
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The problems related to experimental observations of the Hall-induced
edge charges will be discussed later in Sect. 3.3.

Figure 2: Coordinate dependence of the dimensionless charge density η (left
scale) and dimensionless Hall potential ψ (right scale) in 2D electron gas
with b/l2 = 20 [26]. The broken lines show these values in the absence of
electrostatic effects (l2 → 0).

3 Quantizing magnetic field

Now we turn to the case of 2D electron gas in a perpendicular quantized
magnetic field. In this situation electrons acquire pure discrete energy spec-
trum representing a system of equidistant Landau levels (LLs): EN =
(eH/mc)(N + 1/2) ≡ ~ωc(N + 1/2) (N = 0, 1, 2, ...), each of them is de-
generate ν ≡ eH/(π~c) times per unit area. These specific features — dis-
creteness and degeneracy — of the energy spectrum modify dramatically all
electronic properties resulting in a number of new phenomena, the most fa-
mous of which is the quantum Hall effect. Quantization of energy spectrum
also seriously modify galvanomagnetic phenomena in non-uniform samples
considered in Sect. 2 for a classical electron gas.
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3.1 Screening in quantum Hall systems

Prior to analyzing galvanomagnetic phenomena in non-uniform quantum
Hall

systems, we consider the general question of how the quantizing mag-
netic field modifies spatial distribution of 2D electrons n(x, y) in an inhomo-
geneous potential V (x, y), which in the classical case is locally connected to
V (x, y) by the Fermi (or Boltzmann) function. Due to a singular character
of the density of states, quantized electron gas can no longer provide local
connection between potential and concentration. First of all, we illustrate
it qualitatively and present a general picture of screening in quantum Hall
systems [26, 29] assuming a degenerate character of 2D electron gas.

Let us consider one-dimensional band bending V (x), created, for in-
stance, by some depleting external potential. If we, for a moment, neglect
the self-consistent potential created by electrons, then the electron density
distribution n(x) would have a stepwise distribution shown in Fig. 3. At
each point where some LL crosses the Fermi level ζ0, n(x) changes abruptly
by ν. If now we remember that electrons are charged particles, then such
a singular behaviour of electron density on the background of a uniform or
slowly varying density of compensating impurity change will mean the pres-
ence of charged strips dramatically deforming the bare potential. Instead of
steps in electron density, we obtain a self-consistent potential ϕ containing
horizontal plateaus with ζ0 pinned to some LL (Fig. 3).

As a result, in the presence of a non-uniform potential, 2D electron gas
in quantizing magnetic fields becomes separated into a series of alternating
regions of two different types:

1. ”metallic”, or ”compressible” regions where the local filling factor is
non-integer, ζ0 coincides with some LL, electron concentration varies
along the region differing by ν at opposite edges of the same layer but
in equilibrium electrical potential remains constant;

2. ”dielectric”, or ”incompressible” regions where the local filling factor
is integer, ζ0 lies is a gap between LLs, electron concentration remains
constant equal to νN (N = 0, 1, 2, ...) but potential varies differing by
~ωc/e at opposite edges of the same layer.

We will calculate the distribution of concentration and potential inside
”metallic” and ”dielectric” regions and the widths of these regions assum-
ing one-dimensional character of inhomogeneities when n depends only on
the x-coordinate and ϕ — only on x and z. As any screening problem in
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Figure 3: Non-uniform 2D gas in quantizing magnetic field [29]. (a)-(c) —
one-electron picture. (a) — top view of 2D electron gas. (b) — bending of
LLs. (c) — coordinate dependence of the electron density. (d)-(f) — self-
consistent electrostatic picture. (d) — top view of 2D electron gas; shaded
strips represent ”metallic” regions with non-integer filling factor, unshaded
strips represent ”dielectric” integer filling factor regions. (e) — bending of the
potential energy and the LLs. (f) — coordinate dependence of the electron
density. Circles in (b) and (e) represent local filling of the LLs.
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a 2D gas (see Sect. 2.2), this calculation consists in solving the Laplace
equation ∂2ϕ/∂x2 + ∂2ϕ/∂z2 = 0 outside the plane containing electrons,
with corresponding boundary conditions on this plane. Following [29], we
will assume for simplicity that 2D electron gas is formed at the surface of a
semiconductor with high dielectric constant εÀ 1 so that almost all electric
field surrounding the structure is concentrated in vacuum above it, that is
at z > 0.

Particular solutions will be obtained for two different problems: the
quantum Hall system with non-uniform doping and the Hall-induced charge
inhomogeneity (the problem similar to Sect. 2.2 but for the case of quan-
tizing magnetic field). The solution of one more similar problem — edge
states caused by a potential barrier at the sample edge — can be found in
the original paper [29].

3.2 Non-uniform doping

Let our sample have a non-uniform profile of doping level n0(x, y), smooth
enough to fulfil conditions of quasi-neutrality and assume that the equilib-
rium 2D electron concentration in zero magnetic fields is given by the same
function. For simplicity of calculations, we will assume that the compensat-
ing positive charge lies in the same plane as 2D electrons. Generalization
to the case of modulation-doped or MOS-structures has no principal dif-
ficulties.Quantizing magnetic field may result in re-distribution of electron
concentration and deviation from local neutrality near the lines where local
n0 values are close to νN (integer filling factors). At T → 0 the Fermi level
at both sides of these lines should be pinned to different LLs requiring a
potential step of the height ~ωc. To form such a junction, some carriers
from the upper, (N + 1) -st LL in the region of higher concentration cross
the line and move to the empty places at the N -th level, creating a charged
dipole strip.

To calculate parameters of this strip, we place the origin at some point
of the line n0 = νN and direct the x-axis along the gradient of n0. This
allows us to consider concentration distribution as depending only on x (if
the curvature of equiconcentration lines is not very large). By expanding n0
near the origin: n0(x) = νN + αx we can obtain a relatively simple system
of boundary conditions for the Laplace equation determining the potential
distribution above the z = 0 plane. If l is the width of depletion region
abandoned by electrons from the (N + 1)-st LL (to be found below), then
the surface charge density in the region −l < x < l will be eαx. Outside this
region the Fermi level is pinned to the corresponding LLs and potential in
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the layer is constant. This results in the following boundary conditions for
ϕ(x, z):

ϕ(x, z = 0) = 0, x < −l;
∂ϕ

∂z
(x, z = 0+) = −4πeαx, −l < x < l; (34)

ϕ(x, z = 0) = ~ωc/e, x > l.

Such a problem with the character of boundary conditions changing
along the x-axis, can be solved either by conformal transformations [30]
or by means of analytic functions theory [29]. The answer for the potential
profile in a ”dielectric” region −l < x < l is

ϕ(x, 0) =
~ωc
2e

µ
2 arcsin(x/l)

π
+ 1

¶
+ 2πeαx

p
l2 − x2. (35)

Both terms in Eq. (35) contain square-root singularities in the electric field
Ex = −∂ϕ/∂x at x = ±l. Since real potential has no singularities, we must
require these terms to cancel each other, which gives us the expression for l:

l =
1

πe

r
~ωc
2α

. (36)

Similarly, we can find the distribution of charge density

σ(x) = −(4π)−1∂ϕ
∂z
(x, z = 0+)

in ”metallic” regions |x| > l. We restrict ourselves to its asymptotic for
xÀ l, which is

σ(x) ' ~ωc
4π2ex

. (37)

Note that this expression with a very slow decrease of charge density is a
universal law, typical for a screened potential in a 2D electron gas [27] and
independent of the presence and magnitude of magnetic field (the presence
of ωc in the formula marks only the amplitude of potential to be screened
but not the influence of a field on the screening itself). As a result, the total
positive and negative charges, as well as the dipole moment of the strip
diverge. Physically, it means that even at large distance between strips,
they cannot be treated independently.

The most important conclusion from the above is the presence of dipole
strips even at very small amplitude of concentration fluctuations ∆n0. If
∆n0 ¿ ν, then such strips occur only at the average filling factor close to
an integer. Thus we may expect some additional features in Shubnikov-de
Haas-like oscillations of different characteristics of quantum Hall systems in
the vicinity of integer filling factors.
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3.3 Hall-induced edge charges

Now we are returning to the problem of Hall-induced edge charges considered
in Sect. 2.2 for classical magnetic fields in order to discuss modifications of
this effect in the presence of quantized magnetic field changing dramatically
the electron screening processes. We analyze this problem for two qualita-
tively different situations depending on the equilibrium Fermi level position
ζ0 [26].

Let us discuss first the situation when the electron concentration in equi-
librium n0 and the magnetic field H have such values that n0/ν have a non-
integer value or, in other words, ζ0 in the middle of the sample coincides
with some LL: ζ0 ' ~ωc(N+1/2) and does not depend on the concentration.
In this region Eq. (28) gives directly

ϕ(y, 0) = βExy. (38)

But this cannot be the case across the whole sample since, according to
Eq. (33), it would require infinite charge density near the edges (formally
this results from the definition of l2 which becomes zero owing to infinite
density of states at a LL). Therefore, for any applied voltage there will be
”dielectric” strips near the edges. To find the width of these strips δ, as
well as the exact potential and charge density distribution in the sample,
we again solve the Laplace equation but with different boundary conditions
than in our previous problems. Assuming for illustration purposes the case
of half-filled LL in the bulk, we have

ϕ(y, z = 0) = βEy, 0 < y < b/2− δ;

∂ϕ

∂z
(y, z = 0+) = 2πeν, b/2− δ < y < b/2; (39)

∂ϕ

∂z
(y, z = 0+) = 0, y > b/2

and antisymmetric potential shape at negative y. Instead of applying con-
formal transformation, we use here another approach and transform the
Laplace equation into the integral equation for the charge density σ(y) in
the ”metallic” region |y| < b/2− δ:

βEx = eν ln

µ
b2/4− y2

(b/2− δ)2 − y2

¶
+ 2

b/2−δZ
δ−b/2

σ(y0)dy0

y0 − y
(40)

where the integral should be understood as the principal value.
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Eq. (40) has the following solution (see, e.g., [31]):

σ(y) =

πβEx(b/2− δ) + eν
b/2−δR
δ−b/2

ln
³
1 + bδ−δ2

(b/2−δ)2−t2
´
[(b/2−δ)2−t2]1/2dt

t−y

2π2 [(b/2− δ)2 − y2]1/2
.

(41)
The unknown parameter δ can be found from the condition that Eq. (41)
has no singularity at y = b/2− δ. For δ ¿ b

this gives

δ = b

µ
βEx

4eν

¶2
. (42)

For any reasonable values of parameters corresponding to the quantum Hall
effect, the factor in brackets is much less than unity which justifies our
assumption δ ¿ b. Knowledge of the charge distribution in the whole sample
allows us to calculate by direct integration the electrical potential φ(y, 0) and
then the chemical potential ζ(y) from the relation

eϕ(y, 0)− ζ(y) + ζ0 = −βExy. (43)

The exact distribution of electron density, electrical and chemical potential
in the sample are shown schematically in Fig. 4a. A similar non-monotonic
ϕ(y, 0) dependence was earlier obtained by numerical calculations [32, 33].

It is interesting to note that the total charge concentrated in half of the
”metallic” region is of order βExb whereas the charge in the edge ”di-

electric” strip has a much smaller value ∼ eνδ ∼ βExb(δ/b)
1/2.

The arguments given above demonstrate that even at low current (small
Ex ) the electron concentration at opposite Hall edges differ by the finite
value: n(b/2)−n(−b/2) = ν. The phenomenon has the same physical reason
as a finite potential step of ~ωc/e for an arbitrary small potential inhomo-
geneity considered in Sect. 3.2.

Our conclusions are adequate for not very large Ex. If the current (and,
hence, Ex) is large enough, the chemical potential ζ varying at the length
δ may reach the next LL, causing one more ”metallic” strip in the sample.
In this case n(b/2) − n(−b/2) becomes equal to 2ν, rather than ν. Let us
estimate the corresponding critical value ofEx. It can be shown that ζ(b/2)−
ζ0 ∼ eβExδ. An additional strip appears when this difference exceeds ~ωc,
which, together with Eq. (42), gives

µ(Ex)cr ∼
µ

e4

~mb

¶1/3
. (44)
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Figure 4: Schematic coordinate dependence of the electrostatic potential
(curve 1), chemical potential (curve 2) ana non-compensated electron density
(curve 3) under quantum Hall conditions[26]. (a) — non-integer equilibrium
filling factor: n0 = ν(N + γ), ζ0 = ~ωc(N +1/2). (b) — integer filling factor:
n0 = ν(N + 1), ζ0 = ~ωc(N + 1/2 + γ0). Letters M and D note ”metallic”
and ”dielectric” regions. Broken lines correspond to the linear dependence
ϕ(y, 0) = −βExy.
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Further increase in Ex will cause the appearance of additional ”metallic”
strips followed by new jumps in n(b/2)− n(−b/2).

If ζ0 lies in a gap between LLs, ζ0 = ~ωc(N + 1/2 + γ0) with 0 <
γ0 < 1, the situation is rather different. At low currents when eVH is less
than ~ωc, there are no delocalized electrons at the Fermi level. In this
case formally l2 = ∞ and screening is provided only by the deformation of
Landau wavefunctions [28] which is beyond our approach based on the local
connection between the electron density and the

potential. At higher currents the chemical potential level near one or
both edges begins to be pinned to a LL, and the local filling factor acquires
a non-integer value (qualitatively this factor has already been pointed out
[34]). These ”metallic” regions provide effective screening and change the
potential distribution drastically compared to the low-current case.

To obtain the complete picture of charge and potentials distributions
for our case of a ”dielectric” sample (Fig. 4b), we assume for illustrative
purposes γ0 = 1/2 and find, first of all, the charge distribution σ(y) in a
”metallic” strip b/2 − δ0 < y < b/2. Taking into account that this strip,
together with the oppositely charged strip /b/2 < y < −b/2 + δ0, creates
inside itself the uniform electric field βEx (Eq. (38)), we obtain an integral
equation for σ(y):

βEx = −4y
b/2Z

b/2−δ0

σ(y0)dy0

y02 − y2
. (45)

Its solution for δ0 ¿ b/2 has the form

σ(y) = −βEx

2π

s
y − b/2 + δ0

b/2− y
. (46)

The expression Eq. (41) diverges at y = b/2. This singularity is suppressed
by formation of narrow ”dielectric” strips with σ = ±eν/2 near the sample
edges. The situation is similar to the earlier considered case ζ0 ' ~ωc(N +
1/2) and, as it has been shown, the width and total charge of these strips
are very small. Thus everywhere except in the vicinity of the edges we may
ignore the existence of these strips and use Eq. (46).

The calculated charge distribution creates the following potential in the
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neutral part of the sample |y| < b/2− δ0:

ϕ(y, 0) = 2

b/2Z
−b/2

σ(y0) ln
µ
y0 − y

y0 + y

¶
dy0

= −βE(b/2− δ0)
π

2δ0Z
0

s
t

2δ0/b− t
ln

µ
t+ 2

t

¶
dt. (47)

To determine the unknown value δ0, we note that, at the point y = b/2− δ0,
ζ must coincide with a LL and hence ζ − ζ0 must be equal to ~ωc(1 − γ0)
(or to − ~ωcγ0 at the opposite edge). Taking account of Eq. (43), this gives
us (for γ0 = 0.5) the equation

eβExδ
0 £2.4 + ln(b/δ0)¤ = eβExb− ~ωc. (48)

Eq. (48) has solutions compatible with our assumption δ0 ¿ b in a rather
narrow interval of currents. This means that soon after eβExb exceeds ~ωc,
the ”metallic” region covers a considerable part of a sample. As a result, we
come to the situation similar to that of non-integer filling factor. The only
difference is that n(b/2)− n(−b/2) is equal to 2ν rather than ν.

Therefore, in the conditions of quantum Hall effect there is a large in-
terval of Hall fields, ~ωc/eb < βEx < β(Ex)cr, where the electron concen-
trations at opposite sample edges differ by a constant value ν times integer.

In Sect. 2.2 and in the present section we have shown that even in a
completely uniform sample the electron concentration and the Hall electric
field are distributed non-uniformly across the sample and in 2D samples
this non-uniformity can be large enough. How can these effects be observed
experimentally? The question is not so simple. Direct probe measurements
cannot help here, since they measure not electrical but electrochemical po-
tential which, contrary to the electrical one, varies linearly with y and is
the same as it would be in the absence of effects discussed. What we need,
is some experiment, which would measure local values of either electron
concentration or electrical (not electrochemical!) field.

First such experiment was performed in [35]. It was based on measure-
ments of the acoustoconductivity of 2D electron gas, that is the change in
conductivity under the influence on non-equilibrium phonons. In experi-
ments, the GaAs substrate with the GaAs/AlGaAs heterostructure contain-
ing 2D electron gas, was covered from the opposite side by a metallic film
locally illuminated by a focused laser beam. The illuminated hot spot is
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Figure 5: Variation of n(b/2)−n(−b/2) with magnetic field [35]. The effects
of internal inhomogeneity have been cancelled by making measurements for
both current directions.

a source of non-equilibrium phonons, which, travelling ballistically through
the substrate, affect conductivity of the 2D layer in the area just above the
hot spot. The experiments were conducted in external high magnetic field
perpendicular to the 2D layer. The exact physical mechanism of acoustocon-
ductivity (see, e.g., [35]) is irrelevant for our purposes. What is important,
is the fact that acoustoconductivity, as any kinetic coefficient in a high mag-
netic field, has an oscillating (Shubnikov-de Haas-like) function of magnetic
field strength with the period determined by the Fermi energy and, hence,
the carrier concentration. In the case of local laser illumination, the deter-
mined concentration characterizes the area above the hot spot.

Experiments [35] showed that while scanning the laser beam along the
Hall direction, the frequency of such oscillations of the acoustoconductivity
amplitude varied monotonically demonstrating the presence of concentration
gradient in this direction. This gradient changed the sign with the sign of
magnetic field and increased with the field (Fig. 5) confirming that the effect
is related not to some internal inhomogeneity of the sample but to the effect
of Hall-induced concentration gradient described above.

Another possibility of measuring edge charges in 2D samples, realized
in [36], consists in measuring local electro-optical effect giving the value of
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electric field in the vicinity of a sample. The authors directly observed no-
ticeable potential drops hear samples edges under conditions of the quantum
Hall effect and found that these edge regions penetrate the sample rather
deeply (up to hundred micron), in full agreement with weak screening in 2D
systems described above.
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