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Abstract

Making use the quantum-field theoretical approach we derive the
dispersion law for the transverse spin waves in a weakly polarized Fermi
liquid at T = 0. Along with the dissipationless part inversely propor-
tional to the polarization, it contains also the finite zero-temperature
damping. The polarization dependence of both dissipative and reactive
part of diffusion constant corresponds to the dependences found ear-
lier by means of kinetic equation with a two-particle collision integral.
It is shown that similar derivation for “ferromagnetic Fermi” liquid
taking into consideration the divergency of static transverse suscepti-
bility, also leads to the same attenuating spin wave spectrum. Hence,
in both cases we deal in fact with spin polarized Fermi liquid but not
with isotropic itinerant ferromagnet where the zero temperature atten-
uation is prohibited by the Goldstone theorem. It demonstrates the
troubles of the Fermi liquid formulation of a theory of itinerant ferro-
magnetic systems.
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The problem of the zero-temperature transverse spin-wave attenuation in
spin-polarized Fermi liquid has a long history. The calculations of transverse
spin-diffusion coefficient in dilute degenerate Fermi gas with arbitrary polar-
ization was done for the first time in the papers by W. Jeon and W. Mullin
[1] where the low temperature saturation of corresponding relaxation time
has been established. About the same time A. Meyerovich and K. Musaelyan
[2, 3] generalized the Landau derivation [4] of Fermi liquid kinetic equation
from microscopic theory to the case of transverse spin kinetics in the po-
larized Fermi liquid and also came to the same conclusion. A derivation
and an exact solution of the kinetic equation in the s-wave scattering ap-
proximation for dilute degenerate Fermi gas with arbitrary polarization at
T = 0 and for a small polarization at T" # 0 have been obtained also in
the papers [5] by D. Golosov and A. Ruckenstein. For the treatment of this
problem in a Fermi liquid the Matthiessen-type rule arguments and sim-
ple relaxation-time approximation for the collision integral have been used
[6]. More recently, the derivation of transverse spin dynamics in a spin-
polarized Fermi liquid model, from the Landau-Silin kinetic equation with
general form of a two-particle collision integral has been performed [7]. The
existance of zero-temperature damping of transverse spin waves has been
established.

Experimentally the saturation of the transverse spin wave diffusion con-
stant at temperatures about several millikelvin has been registered by the
spin-echo technique (see, for instance, [8]). On the other hand, the spin
wave experiments demonstrate the behaviour characterized rather by the
absence of transverse spin wave damping in the same temperature region
[9]. The latter seem to be a confirmation of the point of view of I. Fomin
[10] who has argued for the dissipationless form of transversal spin wave
spectrum derived from the correction to the system energy due to the gauge
transformation into the coordinate system where the magnetization vector
is constant. It is worth noting that the similar trick was used earlier for
the treatment of one-particle and collective excitations dualism in itinerant
ferromagnets by R. Prange and co-workers [11], which is, in our opinion,
still unresolved problem (see below). The calculation of the generalized sus-
ceptibility coefficient in the expression for the spin current found in [10] has
not been performed, just the reference on such calculation [12] in superfluid
3He had been given. Indeed, one can calculate susceptibility using a similar
procedure. However, in the case of polarized Fermi liquid one must use the
Green functions with the finite imaginary self-energy parts due to collisions
between quasiparticles as it was done in [3, 5], that inevitably leeds to the
spin waves attenuation.
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I. Fomin also used an additional argument in support of absence of at-
tenuation of transversal spin-waves in spin polarized Fermi liquid. This was
an analogy with ferromagnetic Fermi liquid where that attenuation in the
spin wave spectrum was shown by P. Kondratenko [13] to arise only in the
terms of order ~ k* Indeed, it seems that the space-time evolution of
somehow artificially created magnetization in paramagnetic Fermi liquid in
the absence of spin-nonconserving interactions will be developed according
to the same laws as in isotropic itinerant ferromagnet. In reality this is
not true. The conservation of magnetization does not accomplish the dis-
sipationless dispersion of magnons. Even in the inhomogeneously rotating
coordinate system, where the magnetization vector is a constant, the quasi-
particle distribution function of paramagnetic Fermi liquid is still time and
coordinate dependent matrix in the spin space containing odd in momen-
tum off-diagonal part producing the spin current relaxation. In the case
of ferromagnet, the corresponding redistribution of the particles over the
states with different momenta and spin up and down directions is prevented
by the rigidity of many-electron orbital wave function. The last property is
not taken into account in the theory of polarized Fermi liquid and all the
attempts to discuss the itinerant ferromagnets as sorts of polarized Fermi
liquid are incomplete.

The goal of the present article is to reconsider in the frame of micro-
scopic theory the problem of zero temperature spin wave relaxation in spin-
polarized Fermi liquid and in “itinerant ferromagnet”, as it has been defined
in the papers [13, 14]. It is shown that in the both cases the microscopic
derivation leads to the same spin wave spectrum with nonzero damping at
T = 0. If in the former case it just coincides with the conclusion of the pa-
pers cited above, in the latter case it contradicts to the results [13, 14] and
demonstrates, in our opinion, the failure of the straightforward application
of the Fermi liquid concept to the description of itinerant ferromagnetism.

The Landau-type derivation of transverse spin dynamics in a weakly
spin-polarized Fermi-liquid from microscopic theory has been performed in
the paper [3]. Here we make a similar derivation with the purpose to stress
the conditions it needs to be valid, to compare the answer with that obtained
from kinetic equation at nonzero temperatures [7], and to juxtapose this
with the derivation for “ferromagnetic” Fermi-liquid [13, 14] which we also
reproduce afterwards.

As in the original paper by Landau [4], we consider a system of fermions
at T = 0, with arbitrary short range interaction forces. The presence of
polarization means that the particle distribution functions for spin-up and
spin-down particles have different Fermi momenta p; and p_. The Green
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functions near p = p+ and € = p have the form

a
€ — g —vp(p —px) +ib(p — p+)p — p+|

Gi(p,e) = (1)

We use a weak polarization vp(p4+ —p—) < ep and also assume that both
the Fermi distributions are characterized by the same Landau Fermi liquid
parameters. Unlike [15], we introduce here the general form of imaginary
part of self-energy [16] which is quadratic function of the difference (p — p+)
and changes its sign at p = p4, correspondingly. The assumption of small
polarization means in particular that G is given by the expression (1) not
only near its own Fermi surface |p| = p4 and € = p, but in the whole
intervals p_ < p < py and pu_ < e < pu, and also near the “alien” Fermi
surface |p| = p— and € = p_. The same is true for G_.

In general, the polarization is nonequilibrium, hence 1, —pu_ = Q —wy,
where wy, = vHy is the Larmor frequency corresponding to the external field
Hy and 2 is the Larmor frequency corresponding to the effective field which
would produce the existing polarization , vp(py —p—) = Q/(1 + F§). [17]

Following Landau, let us write the equation for the vortex function de-
scribing scattering of two particles with opposite spin directions and a small
transfer of 4-momentum K = (k,w)

(P, P, K) (2)

Gt [ DPLQGHQIG-Q+ KITQ.Po )"

If K is small and polarization is also small, the poles of two Green func-
tions are close to each other. Let us assume that all other quantities in
the integrand are slowly varying with respect to Q): their energy and mo-
mentum scales of variation are larger than max{Q,w} and max{Q/vp, k}
correspondingly. Then one can perform the integration in (2) at fixed val-
ues of Q = po = (p+ +p-)/2, p= (py +p_)/2 in the arguments of I and
Iy functions. In other words, one can substitute in (2)

= IN(P,BP) —

G4(QG-(Q+K) = G1(q,6)G—(a+ ke +w)

2mia?
= (e — p)o(lal — po)

VF
2 +k
T ra v
" _ Trrg T KVF + Dreg. 3)
Wy - G a2y ibkvpQ
LT TFFg T W2 (14 Eg)2 B+ Fy)
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For eliminating I'; from (2) we shall rewrite this equation in the operator
form

T =T — il (i® + Preg)T, (4)

where product is interpreted as integral, and ¢® denotes the first term from
the right-hand-side of eq. (3). In equation (4), we transpose the term involv-
ing ®reg to the left-hand side, and then apply the operator (1+il'1 ®reg)
obtaining

I=T“+TI%®rI, (5)

where
I = (1441 ®reg) T (6)

As it is known [4], I'“(©2 = 0) is directly related to the function determining
the Fermi liquid interaction,

F, nn’

P¥(2 = 0) = T((k|/w) — 0,2 =0) = 7.

(7)
At finite 2 the I'¥ function can be expanded over the polarization as

1Y)
(J,ZJVQIW = Fonr + 3 !

mcnn’ +0(2%). (8)

From Egs. (5) and (8), we come, according to a well known procedure [4],
to the kinetic equation

QF§ b B N ibknvpQ ) (n)
1+ F¢  vi(14 Fg)? v4(1+ Fg)

Q dn’ ibQ
— k e F / 5 . =< / ! .

We limit ourself to the first two harmonics in the Landau interaction function
Fon = F§ + (nn')F{ and Cpy = Cp + (nn’)Cy. To obtain the spectrum of
the spin waves (see below) obeying the Larmor theorem: the system of spins
in a homogeneous magnetic field executes the precessional motion with the
Larmor frequency wy = vHy, the coefficient Cy has to be chosen equal to
unity.

<w—wL+

Introducing the expansion of the distribution function v(n) over spherical
harmonics of direction n = vg/vp, one can find from (9) that the ratio
of amplitudes of the successive harmonics with [ > 1 is of the order of
kvr /2. Hence if this ratio is assumed to be a small parameter one can work
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with distribution function taken in the form [18] v(n) = vo + (nk)r;. The
functions v¢ and v obey the following system of linear equations:

/{Z'UF Fla ib(l — 01/3)Q
_ - 1 _—— = 0 10
(w—wr)ro = =3 < T T Ty )Y (10)
QFe -5 b1 — ¢y /3)02
1+ F§ vE(1+ F§)?

1/1:0.

(11)
Vanishing of the determinant of this system gives the spin waves disper-
sion law. At long enough wave-lengths when the dispersive part of w(k)
dependence is much less than wy,, we have

—k:UF(l + Fg)l/o + (w —wr, +

w=uwr, + (D" —iD"k?, (12)

where ) . .
1 (1 /3

is a reactive part of the diffusion coefficient,

b(1 = C1/3)(1 + Fy)?
3K2

D' =

(14)

is a dissipative part of the diffusion coefficient, x = F§ — F{/3, and H =
Q/v(1+ EFf) is effective “internal” field corresponding to effective “external”
field ©2/~ producing the existing polarization. We derived Egs. (13) and (14)
in the assumption of k # 0.

The expressions for D’ and D” have been obtained first by the same
method by A.Meyerovich and Musaelyan [3]. The former is literally co-
incides with that found in this paper, the latter has the same parametric
dependence but depends in a different way on Fermi liquid parameters. The
reason for this is not clear at the moment. These expressions reproduce the
corresponding diffusion constants obtained from phenomenological Landau-
Silin kinetic equation with two-particle collision integral [7] at arbitrary rela-
tion between polarization and temperature if we put in the latters 7' = 0. In
particular, D’ proves to be polarization independent whereas D" is inversely
proportional to polarization.

Thus, the general microscopic derivation confirms the statement about
the existance of zero-temperature spin waves attenuation in polarized Fermi
liquid. The value of the dissipative part of spin diffusion D’ is determined by
the amplitude “b” of the imaginary part of self-energy. Hence it originates
from collisions between quasiparticles.
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It is worth noting that the inverse proportionality of reactive part dif-
fusion coefficient to polarization is typical for a polarized Fermi liquid. It
appears in all the derivations of spin waves dispersion law including Fomin’s
[10], Prange’s [11], and in Stoner model for itinerant ferromagnetism (see,
for instance, the book [19]). It has nothing in common with the disper-
sion law for a ferromagnet which must be proportional to the magnetization
as it follows from Landau-Lifshits equation [20] taking into account the
domain wall rigidity. The latter is the inherent property of ferromagnet
and absent in the paramagnetic polarized Fermi liquid. The domain wall
rigidity in itinerant ferromagnet is formed because space-time variations of
momentum-dependent off-diagonal, or spin part of quasiparticle distribution
function, are blocked up by the inevitable alteration of the orbital part of
many-particle electron wave function accompanyed by a huge increase of
interaction energy. It is not taken into account in the Fermi liquid theory.
From this point the famous Stoner model of ferromagnetism overlooks the
most important property of a ferromagnet. .. So, in our opinion (see also the
discussion in [7]) the Fermi liquid theory is applicable to a spin-polarized
Fermi liquid but not to itinerant ferromagnets.

There are several known attempts to consider an isotropic itinerant fer-
romagnetic state as some peculiar type of Fermi liquid. This subject was
discussed first phenomenologically by A.A. Abrikosov and I.E. Dzyaloshin-
skii [21] and then microsopically by P.S. Kondratenko [13]. They did not
include in the theory a finite scattering rate between quasiparticles and as
result they obtained the dissipationless transvese spin wave dispersion law as
it seemed to be in isotropic ferromagnet. The derivation [21] was critisized
by C. Herring [22] who pointed out the existance of finite scattering rate
and inapplicability of naive Fermi-liquid approach to itinerant ferromagnet
(see discussion in [7]). Later I.LE. Dzyaloshinskii and P.S. Kondratenko [14]
rederived the spin-wave dispersion law in ferromagnets. Starting from the
Landau equation for the vertex function for the scattering of two particles
with opposite spin direction and a small transfer of 4-momentum, they re-
defined the product of two Green functions G4G_ in such a manner that
its resonant part was taken equal to zero at w = 0. This trick gives a possi-
bility to use the 1/k? divergency of transverse static susceptibility, which is
an inherent property of degenerate systems and occurs both in an isotropic
ferromagnet and in spin polarized paramagnetic Fermi-liquid. The latter of
course is true in the absense of interactions violating total magnetization
conservation. As in the previous papers [13, 21], the authors of [14] did
not introduce a scattering rate in the momentum space between the Fermi
surfaces for the particles with opposite spins.
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Let us see now what kind of modifications appear if we reproduce the
derivation proposed in [14] with the Green functions (1) taking into account
the finite quasiparticle scattering rate in the whole interval p_ < p < p4.
We discuss first an isotropic ferromagnet at equilibrium g, = p_ in the
absence of external field. Following [14] we write:

G+(Q)G-(Q+ K) =Gy(q.e)G-(a+k,e+w) (15)
2mia? w ~
= o(e — w)o(|lq| — . + Preg,
vF (&=l po)w —vpA +ibA? — kvp + 7lbk;FFA e

where A = p; — p_. Now the Eq. (2) is written as
[ =T — T (i® + Preg)T, (16)

where i® denotes the first term from the right-hand side of Eq. (15). The
equivalent form of this equation is

I =Tk 4+ TkoT, (17)

where
rk=r <%| — 0> = (1 + il 1 Preg) 'T1. (18)

The isotropic part of I'¥ is proportional to the transversal susceptibility.
Hence it has a singular form [14]

Here, ¢ is constant with the dimensions of length. It is quite natural to take

1

such that the divergency (19) disappears in nonpolarized liquid when A — 0.
The authors of paper [14] have loss this property by taking ¢ ~ py L
Substitution of Eq. (19) into Eq. (17) gives the transversal spin wave
dispersion law
ibA
w = vpA(ck)?(1 — 22, (21)
vp
which proves to be attenuating similar to the polarized Fermi-liquid. One
can take into consideration a static external field, by working in the rotating
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with Larmor frequency coordinate frame that is equivalent to the substitu-
tion w — w — wy, (see also [14]). As a result, we obtain the dispersion
law )
w=wr, +vpA(ck)*(1 — %), (22)
VR
which obviously coincides with (12) after taking into account the relation (20).

The attenuating dispersion of transversal spin waves is not surprising
because in both cases we deal in fact with spin polarized Fermi liquid but not
with isotropic itinerant ferromagnet where the zero temperature attenuation
is prohibited by the Goldstone theorem. The Fermi liquid theory leading
to the existance of such attenuation is not a correct starting point for the
construction of a theory of isotropic itinerant ferromagnetism.

In conclusion, we note that making use of the quantum-field theoretical
approach, one can derive the dispersion law for the transverse spin waves in a
weakly polarized Fermi liquid at 7' = 0. Along with the dissipationless part
inversely proportional to the polarization, it contains also the finite zero-
temperature damping. The polarization dependence of both dissipative and
reactive part of diffusion constants corresponds to dependences found earlier
by means of kinetic equation with two-particle collision integral. The same
dispersion law is derived by means of another approach where the divergency
of the static transverse susceptibility is taken into consideration. These re-
sults obtained for a system of fermions with Fermi liquid type ground state
are quite natural for a spin polarized paramagnetic Fermi liquid. On the
other hand, in the isotropic itinerant ferromagnet one can expect the dissi-
pationless spin wave spectrum with reactive diffusion constant proportional
to magnetization. This demonstrates troubles of the Fermi liquid formula-
tion of a theory of itinerant ferromagnetic systems, which has to operate
with an ordered type of ground state.

I am grateful to G. Jackeli, A. Meyerovich, I. Fomin, W. Mullin and
E. Kats for numerous discussions.
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