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Abstract

We study the symmetry class for localization which arises from
models of noninteracting quasiparticles in disordered superconductors
that have neither time-reversal nor spin-rotation invariance. Two-
dimensional systems in this category, which is known as class D, can
display phases with three different types of quasiparticle dynamics:
metallic, localized, or with a quantized (thermal) Hall conductance.
Correspondingly, they can show a variety of delocalization transitions.
We illustrate this behavior by investigating numerically the phase di-
agrams of network models with the appropriate symmetry and show
the appearance of the metallic phase. We also study level statistics for
this symmetry class and find that the nearest neighbor spacing distri-
bution (NNSD) at the critical energy follows the Wigner’s surmise for
Gaussian Unitary Ensembles (GUE), reflecting therefore only "basic"
discrete symmetries of the system (time reversal violation) and ignor-
ing particle-hole symmetries and other finer details (criticality). In the
localized regime level repulsion is suppressed.
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1 One-channel network model: introduction

The original network model [1] was proposed to describe transitions be-
tween plateaux in the quantum Hall effect (QHE). QHE is realized in a
two-dimensional electron gas subjected to a strong perpendicular magnetic
field and a random potential. When random potential varies smoothly (its
correlation length is much larger than the magnetic length), a semiclasscial
description becomes relevant: electrons move along the lines of constant
potential. When two equipotential lines come close to each other (near a
saddle point) tunneling is feasible. In the network model, electrons move
along unidirectional links forming closed loops in analogy with semiclassi-
cal motion on contours of constant potential. Scattering between links is
allowed at nodes in order to map tunneling through saddle point potentials.
Propagation along links yields a random phase φ, thus links are presented
by diagonal matrices with elements in the form exp(iφ). Transfer matrix for
one node relates a pair of incoming and outgoing amplitudes on the left to
a corresponding pair on the right; it has the form

T =

µ
cosh θ sinh θ
sinh θ cosh θ

¶
. (1)

The node parameter θ is related to the electron energy in the following
way

� = − 2
π
ln(sinh θ), (2)

where � is a relative distance between the electron energy and the barrier
height. It is easy to see that the most "quantum" case (equal probabilities
of scattering to the left and to the right) is at � = 0 (θ = 0.8814), in fact
numerical calculations show that there is an extended state at that energy.

Numerical simulations on the network model are performed in the fol-
lowing way: one studies system with fixed width M and periodic boundary
conditions in the transverse direction. Multiplying transfer matrices for N
slices and then diagonalizing the resulting total transfer matrix , it is pos-
sible to extract the smallest Lyapunov exponent λ (the eigenvalues of the
transfer matrix are exp(λN)). The localization length ξM is proportional to
1/λ. Repeating calculations for different system widths and different ener-
gies allow one to show that the localization length ξM satisfies the scaling
relation

ξM
M

= f

µ
M

ξ(�)

¶
. (3)
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In the QHE the thermodynamic localization length ξ(�) ∼ |�|−ν and ν =
2.5 ± 0.5. This is the main result [1] which is in a good agreement with
experimental data for spin-split resolved levels [2], numerical simulations
using other models [3], and the semiclassical argument [4, 5] that predicts
ν = 7/3.

2 New symmetry class D: phase diagram

Altland and Zirnbauer [6] considered properties of quasiparticles in disor-
dered superconductors that are governed by a quadratic Hamiltonian which
may include effects of disorder in both the normal part and the supercon-
ducting gap function. Such Hamiltonians are representatives of a set of
symmetry classes different from the three classes which are familiar both in
normal disordered conductors and in the Wigner-Dyson random matrix en-
sembles. A list of additional random matrix ensembles, determined by these
new symmetry classes, has been established. These additional random ma-
trix ensembles describe zero-dimensional problems, and are appropriate to
model a small grain of a superconductor in the ergodic highly conducting
limit. In our work we have extended the study of class D into two dimen-
sions and found transitions between metallic, localized, or quantized Hall
phases for quasiparticles.

This symmetry may be realized in superconductors with broken time-
reversal invariance, and either broken spin-rotation invariance (as in d-wave
superconductors with spin-orbit scattering) or spinless or spin-polarized
fermions (as in certain p-wave states). The associated changes in quasi-
particle dynamics must be probed by energy transport, since neither charge
density nor spin are conserved. A Bogoliubov-de Gennes Hamiltonian with
this symmetry may be written in terms of a Hermitian matrix [6]. The cor-
responding time evolution operator is real, restricting the generalized phase
factors to be O(N) matrices for a model in which N -component fermions
propagate on links, and to the values ±1 for N = 1, the case that was stud-
ied. We define two models: uncorrelated O(1) model, where phases on the
links are independent random variables, and the model first introduced by
Cho and Fisher (CF) [7] where scattering phases with the value π appear
in correlated pairs (see details below). Each model has two parameters: the
first one is a disorder concentration W , such that there is a probability W
(1 −W ) to have phase 0 (π) on a given link. The second parameter is an
energy � describing scattering at the nodes. We have found [8] that in the
uncorrelated O(1) model, all states are extended independent of � and W .
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For the CF model, the phase diagram (presented in Fig. 1) in the �-W plane
has three distinctive phases: metallic, and two insulating phases character-
ized by different Hall conductivities. The sensitivity to the disorder is a
distinctive feature of class D.

Figure 1: The phase diagram of the CF model obtained from our numerical
calculations.

The existence of a region of extended states means that the smallest
Lyapunov exponent at each particular energy is zero or extremely small.
We wish to discuss this point in detail to demonstrate the power of the CC
model. First we present an analytic argument for this result, and then show
how to modify the numerical algorithm employing additional symmetries of
the system that increases accuracy of calculations.

Consider first the uncorrelated O(1) model with M=2. It has two eigen-
vectors (1,−1)T and (1, 1)T . The effect of one node and one link transfer
matrix on the first eigenvector isµ

cosh θ sinh θ
sinh θ cosh θ

¶µ
1 0
0 A

¶µ
1
−1

¶
= exp(−Aθ)

µ
1
−A

¶
(4)
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and after many iterations

... = exp[(−A−AB −ABC − ...)θ]

µ
1

−ABC...
¶

(5)

where A, B, C, ... assume values +1 with the probability W , and −1 with
the probability 1 − W . The same procedure with the eigenvector (1, 1)T

produces the same result as Eq. (7), with all signs reversed. The weighted
averaged value of the exponent (taking into account contributions of both
eigenvectors) defines the Lyapunov exponent. We therefore need to find the
relative weights of the two eigenvectors. The ergodicity of the system im-
plies that after many iterations, the expression ABC... equals +1 (−1) with
probability α (1− α) for some constant α. Assuming the same probability
after the next step, we find αW + (1 − α)(1 −W ) = α which immediately
gives α = 1/2, thus both eigenvectors have the same relative weight, and
their contributions to the Laypunov exponent cancel each other exactly. We
therefore conclude that for M=2, the Lyapunov exponent is exactly zero
independent of θ (�) and W .

The decomposition of the transfer matrix for the CF model givesµ
coshAθ sinhAθ
sinhAθ coshAθ

¶
=

µ
1 0
0 A

¶µ
cosh θ sinh θ
sinh θ cosh θ

¶µ
1 0
0 A

¶
. (6)

The same exercise for the CF model produces exp(Aθ) for both eigenvectors,
the Lyapunov exponent then is zero only when < A >= 0, i.e. for W = 1/2.

The standard method for calculating numerically Lyapunov exponents
involves application of transfer matrix for successive slices of the system on
a set of M orthogonal vectors, and imposing orthogonality by means of the
Gram-Schmidt procedure [9]. If all Lyapunov exponents are separated by
gaps, this set of vectors converges to the eigenvectors of TTT associated
with the first M exponents (the width of the system is 2M). Convergence
rates are determined by the sizes of gaps between adjacent exponents. In the
present case, convergence rates are seriously reduced if the smallest positive
Lyapunov exponent ν1 approaches zero, so that the gap between the smallest
exponents vanishes. Moreover, numerical noise ultimately limits the extent
of convergence, and leads to an erroneously large value for ν1. To overcome
this flow the following modification of the numerical algorith was proposed
[8, 10]. Consider the transfer matrix T of the whole system in more detail.
It has the polar decomposition

T =

µ
A1 0
0 A2

¶µ
cosh γ sinh γ
sinh γ cosh γ

¶µ
AT
3 0
0 AT

4

¶
, (7)
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where A1, ...A4 areM ×M real orthogonal matrices and γ is anM×M real
diagonal matrix. It follows that T TT is diagonalized by the transformation
BTTTTB, where

B =

µ
A3 A3
A4 −A4

¶
. (8)

We then impose on the M pertinent vectors (beyond simple orthogonality)
an additional constraint that their first M components separately form an
orthogonal matrix A3, and their last M components from A4, as is evident
from Eq. (4). This procedure drastically improves convergence and accu-
racy of the calculations, confirming analytical arguments presented above
for both systems.

3 Level statistics: introduction

Statistics of energy levels in disordered systems is an important tool in de-
termining their transport properties as well as their critical behavior. A
central quantity in this study is the nearest neighbor spacing distribution
(NNSD) denoted by p(s). Here the random variable s is the (fluctuating)
level spacing under the proviso that the local average of the density of states
is energy independent (otherwise, a proper unfolding procedure is required).
The distribution p(s) involves all N point correlation functions of the per-
tinent Green function and hence, it is generally not available in a closed
form.

In dealing with disordered systems, it is useful to distinguish between
systems undergoing an Anderson type metal-insulator transition, and those
characterized by quantum Hall (QH) like transition where, in the thermo-
dynamic limit, critical state energies are isolated points occuring between
continuous intervals of localized states energies. As for level statistics per-
taining to disordered systems of the Anderson metal-insulator transition
kind, there is a couple of important properties which are well established:
1) Under certain conditions it is expected to be represented (on the metallic
side) by random matrix spectra[11]. To be more precise, it is well described
by one of the corresponding Gaussian ensembles, GOE (Gaussian orthogo-
nal), GUE (Gaussian unitary), and GSE (Gaussian simplectic), depending
on the symmetry class to which the physical system belongs. The main
condition is that the corresponding energy intervals are smaller than the
Thouless energy. 2) It has been shown[12] that in the limit of an infinite
system there are only three types of distributions p(s). They are the Poisson
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law for the insulating regime, the Wigner surmise for the metallic domain
and a third one for the critical region. On the other hand, for systems in
the second group (such as the QHE) there is no similar analysis. The main
difficulty is related to the fact that in the absence of a metallic regime, it
is not possible to approach the critical point from the metallic regime using
the powerful tool of expansion in the small parameter 1/g (here g is the
dimensionless conductance). Common sense suggests that the distribution
follows the Poisson law in the insulating part of the spectra while again,
the distribution in the critical region is different, and related to the relevant
universality class. For the QH transition this is supported by numerous
numerical calculations[13].

We present results for class D of disordered superconductors that have
neither time-reversal nor spin-rotation invariance. NNSD at the critical
energy (after unfolding) coincides with Wigner’s surmise, which was also
the result for the original U(1) network model. We find the density of states
(DOS) to have a periodic structure (period π/2) as one would expect from
the form of the unitary operator. Beside the critical region, we also present
results for the localized regime and show that level repulsion disappears.
Thus, although the U(1) and class D models describe different systems and
have different phase diagrams, yet the NNSD in the critical region is the
same, depending only on the broken time-reversal symmetry. The fact that
class D obeys the particle-hole symmetry is not reflected in its NNSD. Our
findings are in agreement with recent works [14] where it is argued that
k-body embedded Gaussian ensembles of random matrices for sufficiently
high rank k of the random interaction behave generically (i.e. in order to
have exact RMT results it is not necessary for the Hamiltonian to be a full
random matrix).

4 Numerical model and unfolding procedure

If the network forms a torus, then on every link the electron motion appears
once as an outgoing one and once as an incoming one. The collection of
relations between incoming and outgoing amplitudes defines the system’s S
matrix or rather, a discrete-time unitary evolution operator, U(�) [16, 17].
The eigenphases of U serve as input for level statistics analysis. For a square
network of N ×N nodes , U is an (2×N 2)× (2×N 2) unitary matrix. The
action of U on a vector Ψ of flux amplitudes, defined on the start of each link
maps system on itself, providing therefore an implicit eigenvalue equation
U(�)Ψ = Ψ. Since the dependence of the matrix elements of U on � is
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complicated, it is practically impossible to find solutions of that equation
(even numerically). Instead, it has been suggested[17] to find the eigenvalues
of the equation

UΨn = exp[iωn(�)]Ψn, (9)

and to study statistics of ωn for a given �. The rationale behind it is twofold.
First, there are many states even in the narrow window near a paricular
energy � to provide good statistics. Second, the behavior of the curves ωn(�)
is smooth enough, therefore statistics of ωn for a given � is expected to be
the same as statistics of �n for ω = 0 (which are the true energy eigenvalues).
We argue that the second hypothesis is justified only after a proper unfolding
procedure is executed. Taking into account that level statistics should be
manifested for each individual sample (as in the study of nuclear spectra),
the spectrum of each sample should then be properly unfolded. Here we use
the dimensionless unfolded distance between two levels

∆sn = 2k
En+1 −En

En+k −En−k
, (10)

where k is a number of neighbors to be optimized by the requirement of hav-
ing a constant DOS. This procedure encodes the important local fluctuations
of level spacing.

Figure 2: Histogram for the DOS of 50 samples for CF model at the critical
point � = 0 and W = 0.1.
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The phase diagram (Fig. 1) in the (�,W ) contains a region of metallic
states, and two distinct localized domains, which can be identified as regions
with different quantized thermal Hall conductance. There is a critical state
at � = 0 for any W .

Figure 3: Nearest neighbor spacing distribution p(s) for the CF model at
� = 0 and W = 0.1 (metallic regime). The solid line is Wigner’s surmise for
GUE.

In our numerical simulations we have studied 50 different network sys-
tems, of size (2 × 322) × (2 × 322) on the critical line � = 0 and disorder
strength parameter W = 0.1. The raw DOS appears to be a periodic func-
tion of ω with period π/2 reflecting the cubic symmetry of the CF model
(Fig. 2). The NNSD is presented on the Fig. 3, and are compared with
the Wigner surmise for GUE. The agreement is rather evident, and it could
not be achieved without unfolding. We are thus convinced that the critical
form of the NNSD at the critical line of the CF model (in fact of class D
in general) coicides with the GUE. Next, we move away from the critical
line and put � = 1, keeping the same value W = 0.1 which, according to
our phase diagram is well within a localized domain. The results are shown
in Fig. 4. They are fitted by the Berry-Robnick approximation[18] , which
is an interpolation formula between Wigner’s surmise and Poissonian sta-
tistics. Usually, the large s behavior is more sensitive to localization than
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Figure 4: Nearest neighbor spacing distribution p(s) for the CF model at
� = 1. and W = 0.1 (localized regime). The solid line is Berry-Robnick fit
for a transition from GUE to Poissonian statistics.

the small s one. In other words, even deeply inside the localized regime one
still finds level repulsion p(0) = 0. Remarkably, for the CF model we find
p(0.025) ≈ 0.53 which cannot be just attributed to statistical error taking
into account that we study almost 106 energy levels. We have also calculated
the compressibility of the spectrum η and have found extremely small value
≈ 0.01 which is in agreement with a classical result for GUE where η → 0
for large system sizes.

5 Conclusion

We summarize by mentioning that we have presented results for the class D
of disordered superconductors using various applications of the CC model.
The model allows some powerful analytical arguments as well as numerical
simulations of different physical quantities. The phase diagrams for differ-
ent realizations of disorder show that while for the uncorrelated O(1) model
all states are extended, the CF model has three distinctive phases: metal-
lic, and two insulating phases characterized by different Hall conductivities.
The sensitivity to the disorder is a distinctive feature of class D. As for the
level statistics, although mappng of a physical problem on a network model
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results in correlated and sparse matrices of unitary evolution operators, the
results for NNSD seem to agree with the predictions of RMT which assume
non-sparse matrices with uncorrelated matrix elements[14]. In the cases
studied here this agreement is achieved after a proper local unfolding of the
spectra is executed. The main physical result is the following: Despite the
occurrence of ten different random matrix symmetry classes according to
time-reversal, spin-rotation and particle-hole symmetries, with many differ-
ent physical properties, some basic characteristics remain intact, depending
only on time reversibility and spin rotation invariance. There have been
numerous attempts to check whether the form of p(s) in QH like systems
deviates from that of GUE[19]. Our results indicate that as far as the net-
work model realization is concerned, p(s) is satisfactorily accounted by the
Wigner surmise for the unitary ensemble. The violation of time reversal
invariance either by a magnetic field (in QH systems) or spontaneously in
unconventional superconductors is the dominant factor, which masks finer
details as quantum criticality.

The work was supported in part by Sacta-Rashi foundation (VK). VK
appreciates stimulating discussions with Hans Weidenmüller, Thomas Selig-
man, Yoram Alhassid, Richard Berkovits and Alexander Mirlin.
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