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Abstract

Layered singlet paired superconductors with disorder and broken
time reversal symmetry are studied focusing on edge states and the
corresponding quantum Hall effects. We find quantum Hall phases
with spin Hall coefficients of σspinxy = 0, 2 separated by a spin metal
phase. We identify a spin metal-insulator localization exponent as well
as a spin conductivity exponent of ≈ 0.96. In presence of a Zeeman
term an additional σspinxy = 1 phase appears. The phase diagram, in
terms of the average intergrain transmission and the interlayer tunnel-
ing, demonstrates charge-spin separation in transport.

PACS: 73.20.Fz, 72.15.Rn, 73.43.-f

1 Introduction

The problem of quasiparticle transport and localization in disordered su-
perconductors is of considerable interest in view of experimental activity on
the high Tc cuprates as well as theoretical realization that disordered su-
perconductors provide new symmetry classes of random matrix theory [1].
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Of particular interest is class C for which the Hamiltonian breaks time re-
versal symmetry but spin rotation invariance remains intact. Physically, it
can be realized in materials consisting of singlet superconductor grains in a
magnetic field or else, by a superconductor in the absence of magnetic field
whose order parameter breaks time reversal invariance, such as d+id0. Class
C can therefore be realized by high Tc compounds where d wave pairing is
well established. In fact, d+ id0 pairing has been suggested [2], in particular
in overdoped compounds or as field induced [3].

Transport properties of random superconductors are unusual since a qua-
siparticle does not carry charge, being screened by the condensate, while the
singlet paired condensate does not transport spin. Furthermore, the gapless
nature of d wave pairing with low lying quasiparticle excitations leads to
a rich phase diagram in 2-dimensions (2D) with spin quantum Hall phases
[4, 5], spin insulators and spin metals [6, 7]; a metallic phase was also found
for triplet pairing [8].

In Section 2 we study edge states of d+id’ superconductors and show
their relation with quantum Hall effects (QHE). The description with edge
states allows also to identify the intergrain transmission, which is an essential
parameter of the network model. In Section 3 and 4 we present the network
model in 2D and 3-dimensions [9] (3D), respectively, and the resulting phase
diagrams.

2 Edge states

An important insight into the nature of d+ id0 superconductors comes from
studying their edge states [2, 3, 10] which provide a realization of our network
model and identify its parameters. In the d wave case a prominent zero bias
anomaly [2, 3] has identified a surface state at zero energy. The d+ id0 case
allows current carrying chiral states that split the zero bias anomaly as seen
in the overdoped compounds [3]. The chirality of these edge states leads
directly to quantized Hall conductance [5, 10].

In Fig. 1 we demonstrate edge states on a 110 surface. Note that in the
absence of the d’ component the order parameter ∆(ζ) = ∆ sin 2ζ has the
symmetry ∆(ζ) = −∆(−ζ). Hence under a specular reflection a quasiparti-
cle incident at an angle ζ and reflected at −ζ sees an order parameter that
changes sign, which is a well known condition for a zero energy bound state
at a SNS junction. The eigenfunctions with momentum ky parallel to the
surface, ky = kF sin ζ with kF the Fermi wavevector, are [10]

ψ(ζ;x) ∼ e−x| sin ζ|/ξ (1)
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Figure 1: Order parameters of a d wave and d’ wave superconductor relative
to a 110 surface. Also shown is the range of incident angles which produces
a bound state with positive energy.

Figure 2: Order parameters of a d wave and d’ wave superconductor relative
to a 100 surface. Also shown the range of incident angles which produces a
bound state with positive energy.
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where x is a coordinate perpendicular to the surface and ξ is the coherence
length associated with the ∆ order parameter, ξ = vF /∆ with vF the Fermi
velocity. Since all bound states are at energy � = 0 this results in a "giant"
zero bias anomaly, as indeed seen in tunneling data [2, 3]. Once a ∆0 order
appears (we consider ∆0 ¿ ∆) the order parameter is ∆(ζ) = ∆ sin 2ζ +
i∆0 cos 2ζ and it changes sign with ζ → −ζ only for ζ = π/4. Hence the
spectrum of bound states is in the range 0 < � < ∆0 for the angles as shown
in Fig. 1 with � = 0 at ζ = ±π/4.

In Fig. 2 we demonstrate edge states on a 110 surface. The order
parameter is ∆(ζ) = ∆0 sin 2ζ + i∆ cos 2ζ and the bound states are

ψ(ζ;x) ∼ e−x| sin ζ|/ξ
0

(2)

where ξ0 = vF /∆
0. These bound states exist only for ∆0 6= 0 and the spectra

is in the range 0 < � < ∆. This energy range is mostly above the bulk
gap of ∆0, however, for a given ky the surface state energy is above the
corresponding one in the bulk, hence for a pure system it is stable.

Data on overdoped YBCO [3] has shown splitting in tunneling maxima
even without an external magnetic field. This is consistent with the onset
of d + id0, though d + is is also possible. Further data on spontaneous
magnetization [11] supports the d+id0 state, though final assignment awaits
further data.

These edge states are chiral, reflecting the broken time reversal symmetry
of the order parameter. For linear response we can linearize the spectrum
near the � = 0 states at ζ = ±π/4, with velocity [10] v0 = √8∆0/kF (for a
(110) surface). These two branches can be represented by a spinor Ψ†(y) =
[η1(y), η2(y)] and the effective Hamiltonian in the presence of impurities has
then the form [10]

H =

Z
dyΨ(y)[−iv∂y + V (y)σ1]Ψ(y) . (3)

The random potential V (y) is ineffective for chiral fermions. Formally one
can perform a gauge transformation

Ψ(y)→ exp[iσ1

Z y

V (y0)dy0]Ψ(y) (4)

so that V (y) cancels in the Hamiltonian. More physically, the chiral states
cannot backscatter as there are no states with opposite velocity, hence they
are not sensitive to impurities. For small grains a backscattering is possible
between opposite edges, as studied in Section 3.
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The chiral edge states imply directly QHE. We note first that there is
no charge transport, since the condensate screens the motion of charge by
quasiparticles. The charge hall conductance has been evaluated [10] for finite
frequency ω and wawevector q with the result

σxy(q, ω) =
e2

4π~
c2sq

2

c2sq
2 − ω2

sign(∆∆0) (5)

and cs = vF /
√
2. Note the appearance of a Goldstone mode in this trans-

verse response. For standard transport one has q → 0 first so that σxy = 0.
The condensate does not screen spin or heat transport. Hence by ap-

plying a spin voltage Vs, an analog of a space dependent Zeeman term
Vs = µB

∂Bz
∂y , we can induce a spin current. If we define ~/2 as the unit

spin conduction, in analogy to e for charge transport, then the analog of
e2/h is (~/2)2/h = ~/8π and the quantized Hall conductance becomes [5]

σspinxy = 2
~
8π
sign(∆∆0) (6)

with the factor 2 representing the two edge state channels.
Similarly, heat conduction is the ideal metal conduction, leading to ther-

mal Hall conduction Kxy with the ratio Kxy/T being quantized

Kxy = 2π
2k2B/3h . (7)

We conclude this section by deriving the transmission between grains,
a parameter which eventually controls the phase diagrams in Sections 3
and 4. Consider then two grains of d + id0 superconductors with parallel
edge states along an axis y. An impurity provides an intergrain scattering
potential V aδ(y), where a is a lattice constant. The right and left moving
edge state ψR(y) and ψL(y) then satisfy

−iv∂xψR(y) + V aδ(y)ψL(x) = EψR(y)

iv∂yψL(y) + V aδ(y)ψR(y) = EψL(y) (8)

where E is an energy eigenvalue. Here v is the edge state velocity, v ≈ a∆0

for a (110) surface and v ≈ a∆ for a (100) surface [10]. The transmission
from an incoming ψR(y) to an outgoing ψL(y) is readily evaluated as

T0 =
4(V a/2v)2

[1 + (V a/2v)2]2
. (9)

Note that T0 has a maximum of 1 at V a/2v = 1 and decreases at large
V [since then the matching of states near the impurity (E ≈ ±V ) with
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the nearest levels on the edges (E ≈ ±v/a) is reduced]. The transmission
needed for exhibiting an extended state, T0 = 1/2, is achieved at V ≈ ∆0
for (110) edges or V ≈ ∆ for (100) edges, i.e. a much weaker impurity in
the former case.

3 2D random superconductors

Consider a superconducting order parameter for the pairing of electrons on
site i and site j, ∆ij ∼ hci↑cj↓i.

A singlet supeconductor satisfies the general symmetry

∆ij ∼ hci↑cj↓i = −hci↓cj↑i = hcj↑ci↓i (10)

so that ∆ij = ∆ji is symmetric. The hamiltonian, in particle-hole space is
then written in the form

Hs =
X
ij

³
c†i↑ ci↓

´µ hij ∆ij

∆∗ij −hTij

¶Ã
cj↑
c†j↓

!
(11)

where ci↑, ci↓ are annihilation operators for spin up or down, respectively, at
site i and hij are the normal state Hamiltonian including tunneling elements
between sites i, j and possibly a magnetic field; hij and ∆ij may be random.
This Hamiltonian has an exact symmetry under the operator

Q =

µ
0 1
−1 0

¶
× complex conjugation (12)

so that QHsQ
−1 = −Hs. This corresponds to particle-hole symmetry so

that the spectrum is symmetric around zero energy. This symmetry leads
to a distinct classification in random matrix theories, which for the present
s wave superconductors is termed class C by Altland and Zirnbauer [1]. For
the network model, the transfer matrix T along a link (Fig. 3) is equivalent
to an evolution in time τ (note the unidirectional propagation at each link)
hence T = exp (−iHsτ) and QTQ−1 = T . This identifies T as elements of
the SU(2) group, chosen at random (with the Haar measure) to represent
the randomness of the superconducting grains.

Thus T represents Andreev scattering where particles and holes are
mixed. Hence quasiparticle charge in a superconductor is not conserved and
the localization problem of interest in a disordered superconductor involves
spin and energy transport, rather than charge transport.
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Figure 3: Network model. The links (horizontal full lines) represent prop-
agation around superconducting grains, while nodes (vertical dotted lines)
represent particle or hole transfer between grains

The nodes of the network model (vertical dotted lines in Fig. 3) corre-
spond to transfer of either particles or holes between grains. To preserve
SU(2) symmetry the latter transmissions are equal and are parameterized
by a transmission T0 = 1/[1 + exp(−π�)]. The point � = 0 where transmis-
sion and reflection equal is expected to be a critical point [12]. We allow
also for breaking of SU(2) symmetry by a parameter ∆ which breaks the
particle-hole symmetry on the nodes, i.e. the transmissions of the particle
and hole are

T e
0 (∆) = T h∗

0 (−∆) = 1/{1 + exp[−π(�+∆)]} . (13)

We proceed to present numerical studies for strips of width M and length
L ≈ 104, i.e. the transfer matrices are of size M ×M and are multiplied
L times. The eigenvalues of T †T are well known to have eigenvalues of
the form exp(−2λnL) where λn are Lyapunov exponents. The localization
length is the longest scale ξM = 1/λ1. The behavior of ξM/M identifies the
type of phase: (i) ξM/M decreasing with M is a spin insulator, (ii) ξM/M
independent of M is a critical state, and (iii) ξM/M increasing with M is
a spin metal. The latter identification will be shown below by considering
directly the spin conductance.

We find the scaling behavior

ξM
M

= f(�νM,∆µM) (14)

with ν ≈ 1.1 and µ ≈ 1.4, close to results from an exact mapping [13, 14]
with ν = 4/3 and µ = 3/2.
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Figure 4: 2D phase diagram showing 3 phases with quantum Hall coefficients
of 2,1,0.

Fig. 4 shows the phase diagram. For SU(2) symmetry with ∆ = 0 there
is a single critical point at � = 0; for � < 0 the system has high transmission
and is equivalent to the pure case as studied above, i.e. a Hall coefficient
of 2. At � > 0 the disorder dominates and the Hall coefficient drops to 0.
When ∆ 6= 0 there are 3 phases, with Hall coefficients 2, 1, 0, respectively,
and the phase boundaries satisfy �c ∼ ±∆µ/ν with the crossover exponent
of µ/ν ≈ 1.3. For ∆ 6= 0 the symmetry reduces to U(1) with the exponent
of the usual QHE, i.e. ν0 ≈ 2.5 with

ξM
M

= g[(�− �c)
ν0M ] . (15)

We note that charge transport in random superconductors is determined
by different parameters, i.e. it is determined by the condensate and there-
fore by random Josephson phases between grains. This lead to an XY model
with random phase shifts which at 2D has an order-disorder transition at
a finite value of disorder [15]. i.e. the phase correlation between grains is
lost at high disorder. In contrast, the spin (or heat) transport is carried
by quasiparticles and is determined by the average value of the transmis-
sion between grains T0(�), while disorder in � is irrelevant [9]. Therefore,
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although the quasiparticles are repeatedly scattered by the condensate ran-
dom order parameter, spin-charge separation in transport persists on long
scales. We conclude then that a superconductor-insulator transition for
charge transport is disconnected from that of quasiparticle spin transport,
realizing spin-charge separation in transport.

4 3D random superconductors

We extend our network model to 3D by using a layered system with addi-
tional nodes, coupling t between layers, as shown in Fig. 5, similar to the
extension of the usual QHE to 3D [16].

Figure 5: 3d network model following Ref. [16]. There are additional nodes
(vertical dashed lines) between layers of strength t.

The transfer matrix at the node connecting neighboring layers is

T3 =

µ √
1− t2 t

−t √
1− t2

¶
. (16)

The transfer matrix transfers now M ×M links and is of size 2M2 × 2M2.
The phase diagram for the class C network model (with ∆ = 0) is displayed
in Fig. 6. Square boxes represent critical �cr(t) lines. The particle-hole
symmetry of the superconductor ensures a degeneracy at the critical point
� = t = 0, i.e. the Hall coefficient changes by two units. Furthermore, in
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Figure 6: Phase diagram of the 3D network model with spin-rotational
symmetry.

the clean limit the Hall conductance has two units as shown in Section 2,
corresponding to a transmission T0 = 1, i.e. � > 0 is large. Hence there are
three distinct phases: Hall insulator with Hall conductance σxy = 0, spin
metallic phase, and a quantized spin Hall phase with σxy = 2.

The width W (t) in � of the metallic region increases with t, and is ex-
pected to behave as[16] W (t) ∼ t1/ν2d where ν2d is the localization length
exponent in 2D. The argument is that for a 2D isolated layer the mean level
spacing is ∼ 1/ξ22d with ξ2d the 2D localization length. The states in each
layer are concentrated along a percolation cluster of length ξ2d and width
of the edge state (a coherence length[10]) , i.e. normalized as ∼ ξ

−1/2
2d ; the

interlayer coupling is then ∼ t/ξ2d. At the mobility edge the mean level spac-
ing is of the same order as the interlayer coupling according to the Thouless
criterion, hence � ∼ t1/ν2d . The curve in Fig. 6. represents the least square
fit for the data, producing W ∼ t1/1.2, which is in good agreement with our
value of ν2d in Section 3.

The divergence of the localization length at �cr(t) identifies the localiza-
tion exponent of a spin insulator-metal transition in 3D. We have evaluated
the critical exponent at the symmetric point t = 1/

√
2 (larger t maps into

a smaller t by rearranging layer indices) and found ν3d = 0.96 on both the
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insulator and metal sides, as shown in Fig. 7; the same value is found for
t = 0.1.

Figure 7: Scaling of renormalized localization length for the 3D network
model with spin-rotational symmetry at t = 1/

√
2 showing an exponent

ν3d = 0.91. The lower and upper branches correspond to the insulating
� > �cr and metallic � < �cr phases, respectively.

Fig. 7 shows that in the metallic phase ξM/M increases approximately
linearly with M . It was proposed [17] that this identifies the 3D conduc-
tivity as σxx ∼ (� − �cr)

ν3d . This derivation needs to be revised since in
the 3D limit the conductivity involves many Lyapunov exponents λn. The
multichannel conductance is given by [18, 19] g =

P
n[1+cosh(λnL)]

−1. For
a few channelsM2 ¿ L the lowest Lyapunov dominates, but in the 3D limit
M2 À L the number of terms Neff that contribute to g is large. In fact, for
many channels the rigidity in the spectrum of T †T suppresses fluctuations
in {λn} and one expects [19] λn = nλ1. Hence g ≈ Neff ≈ 1/(λ1L). The
conductance has then the form

g ≈ Neff ≈ M

L
[a(�− �cr)

ν3dM + b] . (17)

This shows that the conductivity in 3D is indeed σxx ≡ gL/M2 ∼ (�−�cr)ν3d .
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On the critical line � = �cr the conductance is limited to the surface area
and is ∼ b.

Consider next the ∆ 6= 0 case with broken spin rotation symmetry. At
∆ = 2, e.g., the 2D system (t = 0) is critical at �cr = ±0.64 with a critical
exponent νQH ≈ 2.5 of the usual quantum Hall system. At t 6= 0, we
expect each of the critical states to split into two with a band of metallic
states between them (as for ∆ = 0), however it is not obvious wether the
two internal critical curves merge or do not cross as t increases. We find
merging of these lines, producing a four-phase diagram as shown in Fig.
8. Both outer critical lines scale as t ∼ |� − �cr|νQH in agreement with the
argument above. The inner curve is affected by both critical points and
therefore deviates from this scaling form.

Figure 8: Phase diagram of the 3D network model with ∆ = 2 showing an
additional phase with σxy = 1.

Fig. 8 shows the existence of a new phase with σxy = 1 which becomes
metallic at very low values of t, e.g. t = 0.001 at � = 0. This feature can be
traced to the rather large ξM/M values for t = 0 in the range −�cr < � < �cr.
We note that at t = 0 a single spin state becomes extended at �cr, while
the other spin state becomes extended independently at −�cr. For t < 0.001
these extended states produce two metallic bands which do not overlap,
hence when the chemical potential is in between these bands the σxy = 1
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phase emerges. When t > 0.001 these bands overlap and a σxy = 1 phase is
not possible. We emphasize that there is a single metallic phase, hence in
this phase the two extended spin states mix via interlayer coupling, unlike
the situation at t = 0.

5 Conclusions

We have demonstrated spin-charge separation in transport: spin transport
and related quantum Hall transitions are controlled by the average inter-
grain transmission while charge transport and superconducting correlations
are controlled by the amount of disorder in the intergrain Josephson cou-
pling. We show that interlayer coupling leads to a new spin metal phase
and identify the localization exponent for the spin insulator-metal transi-
tion as ν3d ≈ 0.96. The latter is also the spin conductivity exponent when
approaching the transition from the metallic side. The close relationship
of QHE and edge states allows the latter to be a sensitive probe for d+id’
symmetry and the corresponding QHE.
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