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Abstract
Understanding decoherence in open quantum many-spin systems

is important for many fields of physics, from quantum computations
(QC) to the nuclear and electronic spin resonance. We use numeri-
cal simulations to study some particularly interesting situations where
the destructive impact of environment can be suppressed, so that the
quantum oscillations in the system fall off very slowly, demonstrating
a power-law decay. Such a slow decay may be experimentally relevant
for the QC architectures based on electron spins in quantum dots or
nuclear spins in semiconductors.

PACS: 03.65.Yz, 02.60.Cb, 03.67.Lx, 85.35.Be

1 Introduction

Recently, much attention has been devoted to the study of quantum compu-
tation (QC) [1]. Numerous physical systems have been proposed as promis-
ing candidates for implementation of QC, and for many architectures the
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basic quantum gates have been experimentally demonstrated. Among oth-
ers, the solid-state spin-based QC architectures utilizing e.g. electron spins
in quantum dots [2] or nuclear spins in semiconductors [3—5], to mention
a few, look particularly promising due to their intrinsic scalability. Also,
impressive experimental progress has been achieved recently in controlling
and measuring a single spin [6—8]. However, many challenges are yet to be
met. To be practical, a quantum computer should contain a large number
of qubits (some estimates give up to 106 qubits [9]), and be able to reliably
perform many hundreds of quantum gate operations. These requirements
are not easy to satisfy in experiments. A real system of quantum spins 1/2
is different from an ideal set of qubits. The system interacts with its envi-
ronment, and this causes a loss of phase relations between different states of
the quantum computer (decoherence) [10—12]. As a result, the system goes
from its original pure state into an incoherent mixture of different quantum
states, thus leading to rapid generation of errors. A detailed theoretical
understanding of the decoherence process is needed for finding the ways to
prevent or to suppress the destructive influence of environment.

Moreover, decoherence is an interesting many-body quantum phenom-
enon which is important for many areas of fundamental and applied physics,
from foundations of quantum mechanics [10, 11] to the advanced electron
spin resonance (ESR) and nuclear magnetic resonance (NMR) techniques
[13, 14]. E.g., interaction of the electon spin with the bath of nuclear spins
(one of the most important decoherence sources) leads to broadening of the
ESR lines. Interaction of a single atom with the engineered electromagnetic
environment leads to the wave function collapse thus quickly destroying
the “Schrödinger cat”-type superpositions [15] and quickly bringing the sys-
tem into a mixture of different quantum states. Even in more conventional
solid state systems, decoherence may have considerable consequences, e.g.
may suppress the spin tunneling in magnetic molecules and nanoparticles
[16, 17], or destroy the Kondo effect in a dissipationless manner [18].

Therefore, it is highly desirable to find ways of suppressing decoherence.
One well known approach to this problem is the use of the spin-echo-like
techniques [19], where the Hamiltonian of the system is changed in such a
manner that the interaction with the environment changes sign, and the un-
wanted evolution caused by the system-environment interaction is reversed.
Extension of the spin-echo-like approach to quantum computations is known
as the “bang-bang control” [20]. Here, we consider a similar situation, where
the inversion of the system-bath interaction is achieved by static interactions
inside the system, instead of periodic field pulses. We show that this, indeed,
leads to suppression of the environment-induced evolution, and the decay
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of quantum oscillations in the system becomes very slow (power-law). This
approach may be experimentally relevant for the QC architectures based on
electron spins in quantum dots or impurity spins in semiconductors.

The rest of the paper is organized as follows. Section 2 briefly describes
the numerical approach we use for simulation of open many-spin systems. In
Section 3, we present the models and the results of our simulations. Section 4
presents our conclusions.

2 Numerical approach

The theoretical description of decoherence, i.e. the description of the evolu-
tion of the central system from its initial pure state ψ0 to the final mixed
state, along with the corresponding transformation of the environment, is a
very difficult problem of quantum many-body theory. Some simple models
can be solved analytically, for some more complex models different approx-
imations can be employed, such as the Markov approximation (which as-
sumes that the memory effects in the bath dynamics are negligible), or the
short-time approximation [21]. A special case of environment consisting of
uncoupled oscillators, so-called “boson bath”, is also rather well understood
theoretically [12]. Although the boson bath description is applicable for
many types of environment (phonons, photons, conduction electrons, etc.)
[12], it is not universal. A particularly important situation where the bo-
son bath model is inapplicable is the decoherence caused by an enviroment
made of spins, e.g. nuclear spins, or impurity spins (so called “spin bath”
environment). Analytical studies of the spin-bath decoherence are difficult,
and the spin-bath decoherence of many-body systems still remains poorly
explored.

The most direct approach to study the spin-bath decoherence is to sim-
ulate numerically the evolution of the whole compound system (the central
system plus the bath) by directly solving the time-dependent Schrödinger
equation of the compound system. This approach allows to avoid any kind
of approximation, except for the obvious limitation on the total number of
spins modeled. Our previous experience shows that this limitation is not
too restrictive, and for many interesting problems reliable simulations can
be run with the baths containing only 15—20 spins 1/2 (depending on specific
problem). However, even such a modest number of spins requires consid-
erable computational resources, because the dimensionality of the Hilbert
space of N quantum spins 1/2 grows very fast (as 2N ), and because the dy-
namical evolution of the system should be followed over substantial periods
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of time. To make such simulations feasible, high-performance computational
schemes are needed.

Here, we use the simulation method based on the Chebyshev’s polyno-
mial expansion [22—25]. This approach is applicable when the Hamiltonian
is not explicitly dependent on time, and as we have shown before [24, 25], is
very efficient for simulating many-spin systems. For time-dependent Hamil-
tonians, a high-performance method based on the Suzuki-Trotter decompo-
sition [28] can be used [26, 27]. Application of the Chebyshev’s polynomial
expansion to the modeling of the many-spin systems has been discussed in
detail elsewhere [24, 25], and here we give only a brief description of the
method.

Let us consider a system of N quantum spins 1/2, which is initially in the
state Ψ0, and whose evolution is governed by the time-independent Hamil-
tonian H. Our goal is to solve efficiently the time-dependent Schrödinger
equation

i dΨ(t)/dt = HΨ(t), (1)

i.e. the system of 2N first-order ordinary differential equations with the
initial condition Ψ(t = 0) = Ψ0. The length of the vector Ψ is 2N ; for a
system of N = 20 spins, an exact solution of about 106 differential equations
becomes a serious task. Moreover, the interaction between the central spins
is often much bigger than the coupling with environment or coupling between
the bath spins, so that the system (1) is often stiff. Simple methods, e.g.
predictor-corrector schemes, perform rather poorly in this case, and very
small integration steps are needed to obtain a reliable solution.

For a time-independent Hamiltonian, the solution of Eq. (1) can be for-
mally written as

Ψ(t) = exp (−itH)Ψ0 = U(t)Ψ0 (2)

where U(t) = exp (−itH) is the evolution operator. An effective way of
calculating the exponent of a large matrix H is to expand it in a series of
the Chebyshev polynomials of the operatorH. The Chebyshev’s polynomials
Tk(x) = cos (k arccosx) are defined for x ∈ [−1, 1]. Thus, the Hamiltonian
H first should be rescaled by the factor E0 (the range of the values of the
system’s energy) and shifted by Ec (median value of the systems’ energy).
For spin systems, both E0 and Ec can be easily estimated, see [24], to
produce the rescaled operator G = 2(H − Ec)/E0 bounded by −1 and 1.
The Chebyshev’s expansion of the evolution operator U(t) (see Eq. 2) now
looks like

U(t) = exp (−iτG) =
∞X
k=0

ckTk(G) (3)
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where τ = E0t/2. The expansion coefficients ck can be calculated using the
orthogonal property of the polynomials Tk(x) to give:

ck =
ak
π

Z 1

−1
Tk(x) exp (−ixτ)√

1− x2
dx = ak(−i)kJk(τ), (4)

where Jk(τ) is the Bessel function of k-th order, and ak = 2 for k = 0 and
ak = 1 for k ≥ 1. The successive terms in the Chebyshev’s series can be
efficiently determined using the recursion

Tk+1(G) = 2GTk(G) + Tk−1(G) (5)

with the conditions T0(G) = 1, T1(G) = G. Thus, to find the vector Ψ(t), we
just need to sum successively the terms of the series (3), using Eq. (5) for
calculation of the subsequent terms, until we reach some pre-defined value
K of k, which is determined by the required precision. The high efficiency
and precision of this scheme is due to the fact that, for k À τ , the value
of a Bessel function decreases super-exponentially Jk(τ) ∼ (τ/k)k, so that
termination of the series (3) at k = K leads to an error which decreases
super-exponentially with K; in practice, K = 1.5τ already gives precision
of 10−7 or better in most cases.

3 The model and the results of simulations

It is instructive to start from an exactly solvable, but experimentally relevant
model of a single central spin S (S = 1/2) interacting with a bath of nuclear
spins Ik (Ik = 1/2), k = 1, . . .M . We assume that a strong quantizing
magnetic field is applied to the system (an ESR/NMR-like situation) along
the z-direction, and an rf field h is applied along the x-axis at a frequency
ωrf close to the resonance frequency ω0 of the central spin (we assume
that the S and Ik are “unlike” spins, i.e. they have very different resonance
frequencies). In the rotating coordinate frame, after omitting the extremely
small non-secular terms [19] in a standard way, the Hamiltonian describing
such a situation is

H = ωSz + hSx +
MX
k=1

AkS
zIzk (6)

where ω = ω0 − ωrf , and the interaction between the nuclear spins Ik,
which is much smaller than Ak, is neglected. E.g., one can think of an
electron spin of a phosphorus donor center in the matrix of silicon. The P
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electron is delocalized in Si over a range of few tens of the lattice constants,
so that the electron spin interacts with many nuclear spins 1/2 of 29Si (all
other Si isotopes have zero nuclear spins). Similar situation is encountered
in quantum dots, where the electron is also delocalized in the dot, and the
electron spin interacts with the nuclear spins of Ga and As (the fact that the
nuclear spins of Ga and As are not 1/2 is not important here). In all these
cases, neglecting the interaction between Ik is valid, since the magnitude of
these dipolar interactions (few kHz) is 3 orders smaller than Ak (few MHz).

A few remarks are in order here. Decoherence of the P electron spin
with the nuclear spins 29Si has been studied both theoretically and experi-
mentally from early 1960s [29, 30] till very recently [31, 32]. However, the
studies we are aware of are focused on “normal” ESR/NMR situation, with
either small h (continuous-wave resonance experiments) or strong fields h
applied during small time intervals, as in pulsed resonance experiments,
free-induction decay (FID) or the spin echo decay (SED). In these cases, the
most important physics is connected with the slow dynamics of the bath.
Here, we consider a situation of a rather strong (h2 À P

k A
2
k) constant rf

field, and the dynamics of the bath is irrelevant. Also, for an electron spin
in a quantum dot, a FID and a SED have been studied [31], and the energy
(longitudinal) relaxation of the electron spin by the nuclear spin bath [33].
Again, totally different physical processes have been considered, and we are
not aware of the studies of this system with strong constant field h.

The model described by the Hamiltonian (6) is exactly solvable due to
the fact that the operator B = ω+

PM
k=1AkI

z
k commutes with all the terms

in the Hamiltonian, and therefore can be treated essentially as a c-number
(with little precautions). The evolution operator is U(t) = cosΩt− i(BSz+
hSx)Ω−1 sinΩt, where Ω = (1/2)[h2+B2]1/2. The observables of the central
spin can be estimated, because the state of the nuclear spins is completely
random at the temperature higher than few nK. It is easy to show that
in this case, for 2M À 1, the trace over the bath spins is equivalent to
averaging over the Gaussian random field B with zero average and dispersion
b2 ≈Pk(1/4)A

2
k. Note that b is just a width of the resonance line: it is easy

to see that for h ¿ b, the FID of the central spin demonstrates Gaussian
decoherence with the T ∗2 time of 1/b. For P donors in Si the linewidth
is 2.5 G, and even for small GaAs quantum dots its value is about 20 G
(the linewidth decreases with the dot size), so it is possible to satisfy the
condition hÀ b in experiments.

Let us consider the case where h À b and ω = 0 (i.e., we are at the
center of the resonance line), and the spin S is initially uncorrelated with
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Figure 1: Decoherence of a single spin coupled to a spin bath, comparison
of the analytical solution (solid line) with the numerical results (dots) for
the envelope of σz oscillations (b) and for oscillations themselves (a). In
(b), most of numerical data points have been removed to make the solid line
visible.

the bath. Then for σz(t) = 2hSz(t)i we have:

σz(t) =
σz(0)√
2πb

Re

Z
dB exp

£−iht− iB2t/(2h)−B2/(2b2)
¤
, (7)

and the envelope of the σz(t) oscillations is

σ(env)z(t) = σz(0)
£
1 + (2t/τ1)

2
¤1/4

,

where τ1 = 2h/b2. Similar results hold also for the σy(t) = 2hSy(t)i os-
cillations. Thus, initially there is the usual Gaussian damping (quadratic
with time), but afterwards it changes to a slow power-law decay 1/

p
2t/τ1.

We have performed the simulations for the system described above in order
to provide cross-check between analytics and numerics. The results of the
simulations are shown in Fig. 1 for M = 14 bath spins and h = 2 (we use
dimensionless units for the field, energy and time). Initial state of the cen-
tral spin is characterized by σx(0) = 0.447, σy(0) = 0 and σz(0) = 0.894,
and the initial state of the bath is a superposition of all possible basis states
with random coefficients. This state is known [34] to approximate the high-
temperature bath’s density matrix ρ = 1M with the error of order of 2−M/2

(which is less than 1% forM = 14), avoiding the use of many realizations of
the bath’s initial state. The period of the oscillations is much smaller than
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the decay time, thus we perform comparison at two different time scales.
Fig. 1a shows the results at fine timescale, corresponding to a few oscil-
lations periods. Fig. 1b demonstrates the overall picture of the decay of
the oscillations envelope, and the individual oscillations can not be resolved
at this coarse timescale. The analytical results for the envelope, and for
the oscillations of σz(t) themselves, coincide perfectly with the numerical
simulations.

We have considered the high-temperature case (random unpolarized state
of the bath), which is adequate for the bath of nuclear spins at the temper-
ature higher than few nK. For the polarized bath described by the inverse
spin temperature β (i.e., for the bath’s initial state described by the density
matrix ρ0 = (1/Z) exp (−β

P
k I

z
k)), the solution (7) remains valid, although

with slightly renormalized temperature-dependent values of h and b, and
the long-time decay retains 1/

√
t character.

The analytical solution makes clear that the rapidness of the system’s
dynamics (h À b in our case) is needed for long-time oscillations in a de-
cohered system. Fast motion of the system eliminates from the evolution
operator the decohering terms which are of first order in the system-bath
coupling, and only second-order terms survive, as seen from Eq. 7, and the
destructive impact of the spin bath is strongly suppressed, although not
eliminated completely, as it would be in the spin echo experiments. On the
other hand, the spin echo trains refocus the central spin only for a very
short time, of order of the FID time T ∗2 , after which time the ESR signal
disappears again, while for the situation above the Rabi oscillations of the
central spin are present constantly.

It is clear from the discussion above that the oscillations in many-spin
central systems can also be sustained in a similar manner, by introducing
in the spin Hamiltonian the terms which invert the system-bath interaction.
In this case, the application of the external rf field h (which may present
some technical difficulties) is not necessary. For example, let us consider a
central system of two isotropically coupled spins 1/2, S1 and S2:

H = JS1S2 +
MX
k=1

AkS
z
1I

z
k +

MX
k=1

CkS
z
2I

z
k (8)

with different couplings between S1 and the bath (Ak), and S2 and the
bath (Ck). This model can describe the two electron spins of P donors
in Si coupled by applying the voltage to an external gate, as in Ref. [3],
or the electon spins in two coupled quantum dots. This model is hard to
solve explicitly, and we use numerical simulations to study this case for
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different system parameters. Fig. 2 presents typical simulations results for
the envelope of the σz1(t) oscillations (the envelope σ

z
2(t) is identical to σ

z
1(t)),

forM = 14 and J = 1.0. The central system initially was disentangled from
the bath, with the spin S1 directed up and S2 directed down. Note that the
difference between Ak and Ck is not important for J À Ak, Ck. One can
see that again, the oscillations of the central spins decay very slowly, in a
power-law t−1/2 manner.

Figure 2: Decoherence of a two-spin system coupled to the spin bath. (a)
The envelope of the σz1 oscillations vs. time. (b) The envelope of the the σ

z
1

oscillations plotted vs. 1/
√
t; the long-time power-law decay t−1/2 is seen:

the calculated points lay on the straight line for small values of the abscissas,
which corresponds to large t.

Using the values of b (given above) for P donor electron in Si, and for
an electron in small GaAs quantum dots, it seems possible to satisfy the
condition J À b in experiments.

4 Conclusions

We use numerical simulations to study how the destructive impact of envi-
ronment on an open many-spin system can be suppressed. The dynamics
has been simulated by directly solving the time-dependent Schrödinger equa-
tion for the compound system (the central system plus the environment).
We consider a situation similar to the “bang-bang control”, where the sta-
tic interactions inside the central system invert the system-bath coupling,
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and show that this leads to suppression of the environment-induced evolu-
tion. The decay of quantum oscillations in the system becomes very slow
(power-law t−1/2). This approach may be experimentally relevant for the
QC architectures based on electron spins in quantum dots or impurity spins
in semiconductors.
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