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Abstract

The theory of non-linear optical effects and related electrodynamic
and hydrodynamic effects in smectic A liquid crystals caused by a spe-
cific nonlinearity mechanism, the so-called second sound, is reviewed.
We investigated the peculiarities of light self-focusing, self-trapping and
nonlinear wave-mixing in smectic A liquid crystals. It is also shown
that a light-induced high frequency longitudinal electric field and a
hydrodynamic flow can be created. Nonlinear optical characteristics
of smectic A liquid crystals are one or two orders of magnitude larger
than similar quantities in isotropic organic liquids.

PACS: 42.70.Df, 61.30.Gd, 42.65.Es, 42.65.Sf, 42.65.Tg

1 Introduction

Liquid crystals (LC) possess unique physical properties intermediate be-
tween ordinary fluids and solids [1, 2]. There exist three types of liquid
crystals: thermotropic, lyotropic and polymeric [1, 2]. In this work we con-
sider only thermotropic LC which manifest the phase transitions related to
their degree of ordering in a definite temperature range [1, 2]. Usually they
consist of organic molecules elongated in one direction. Electrodynamics of
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thermotropic LC has been recently reviewed in [3]. Thermotropic LC, in
turn, are classified as follows [1, 2]. Nematic liquid crystals (NLC) are char-
acterized by some long range order in the direction of the molecular long
axes while the molecules centers of gravity do not have a long range order.
This direction is characterized with the so-called director, i.e. a unit vector
function n (x, y, z, t) of coordinates (x, y, z) and time t in general case. The
structure of NLC is presented in Fig. 1. Cholesteric liquid crystals (CLC)
consist of chiral molecules. For this reason, they form a helical structure in
such a way that the direction of the preferred molecular orientation rotates
in space along the helical axis with a period of the order of magnitude of
300nm [2].

Figure 1: The molecular arrangement in NLC. n is the vector director defin-
ing the preferential direction of the molecular long axes.

The centers of gravity of CLC molecules centers also do not have a long
range order, and CLC may be characterized as a form of twisted NLC. The
structure of CLC is shown in Fig. 2.

The optics of CLC as a helical structure is of a special interest. It has
been thoroughly investigated theoretically [1, 2, 4, 5].

Unlike NLC and CLC having only orientational long-range order, smectic
liquid crystals possess a layered structure. The layer thickness is approx-
imately equal to a length of molecule along its long axis d ∼ (2÷ 3) nm.
In smectic A liquid crystals (SA) the molecules are bound to the layers
and their long axes are perpendicular to a layer plane. Inside a layer the
molecules form a two-dimensional liquid. The SA structure is presented in
Fig. 3.

We do not consider smectic C liquid crystals with tilted molecules in

307



Figure 2: The arrangement of molecules in CLC. Here q is the pitch of the
helix, or the inverse period.

layers, smectic B liquid crystals with in-layer hexagonal ordering of mole-
cules, chiral smectic C liquid crystals with a spontaneous polarization and
different exotic mesophases [1, 2]. LC sample orientation with respect to the
boundary is called homeotropic when the molecular long axis is perpendicu-
lar to the boundary, or planar when the long molecular axis is parallel to it
[1, 2]. The one-dimensional mass density wave in SA results in a complex or-
der parameter where the modulus describes the mass density and the phase
corresponds to the layer displacement. The layers can move relatively easy
one along another since the elastic constant B ∼ ¡2× 107 ÷ 108¢ ergcm−3
related to the layer compression is two, or three orders of magnitude less
than the one responsible for the bulk compression [1, 2]. The elastic energy
related to the director reorientation and the layer compression is determined
by the layer displacement u (x, y, z, t) along the direction perpendicular to
a smectic layer plane. Due to the layer motion, there exist two practically
uncoupled two acoustic modes in SA: an ordinary longitudinal sound caused
by a bulk compression, and the so-called second sound (SS) caused by layer
compression without the mass density change, which actually represents
the oscillations of the complex order parameter phase [1]. The existence of
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Figure 3: The arrangement of molecules in smectic A liquid crystal. Here d
is a layer thickness.

SS was theoretically predicted by de Gennes [6], and then it was observed
experimentally by means of spontaneous Brillouin scattering [7], acoustic
measurements [8, 9], and Raleigh scattering [10, 11]. It has been shown that
SS can be excited in a conducting SA [12, 3]. The SS mode is neither purely
longitudinal, nor transverse, and it vanishes for the wave vectors parallel or
perpendicular to the layer plane [1, 2].

LC are highly nonlinear materials due to their unique complex physical
structures. Their physical properties such as temperature, molecular orien-
tation, mass density are easily perturbed by an applied optical field. The
nonlinear optics of LC emerged as a separate field of liquid crystals study in
the early seventies of the 20-th century. As early as in 1973-1974 the light
self-focusing in an isotropic phase of NLC was registered [13 - 15]. LC have
been singled out as promising materials for nonlinear optics due to their
large optical nonlinearity even in an isotropic phase [16]. The first attempts
to develop a theory of nonlinear optical effects in NLC were made in 1979
[17 - 19]. Since then, the nonlinear optical phenomena in LC have been thor-
oughly investigated both theoretically and experimentally, and an enormous
number of books and papers have been published concerning mainly NLC.
We do not intend to even briefly review this immense field. The history
of the problem and the basic up-today results can be found in a series of
excellent reviews and monographs [20 - 25]. NLC for a long time remained
the main focus of nonlinear optical investigations and applications due to
their giant orientational and thermal nonlinearity and their sensitivity to
low light intensity [22, 24, 26]. They may be used in the image processing,
as a core material in optical fibers, optical waveguides (see, for example, the
works of I.C. Khoo and co-workers [27 - 35]. However, NLC have a slow
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decay time of reorientation and large light scattering loss [24], which lim-
its possible applications of liquid crystals in high peak-power lasers, where
elements are required to be low in loss, and to possess a fast response [36].

In SA, on the contrary, the electrostrictive mechanisms of the optical
nonlinearity are predominant in the case of irradiation with high intensity
nano- and picosecond laser pulses [37 - 39]. The Brillouin scattering in SA
samples with a thickness of about (25÷ 250)µm characterized by a pump-
ing intensity of about 100MWcm−2 and pulse duration of about 20ns is
accompanied by a strong acoustic excitation with an acoustic lifetime of
about 100ns and a high gain due to the large electrostrictive constants of
LC [37, 38]. For this reason, SA appear to be good candidates for small,
fast and sensitive spatial light modulators operating at high enough light
intensities.

The objective of this paper is to give a detailed review of theoretical
results in the field of nonlinear optics of SA obtained during a rather long
period of time, mainly by the author with co-workers. The choice of the topic
is determined by two factors: (i) the personal interests of the author; (ii) the
intention to attract the researchers attention to the possible applications of
SA in optics. In a number of works [40 - 47] the nonlinear optical effects
in SA caused by a specific mechanism of the cubic nonlinearity determined
by the smectic layer normal displacement and propagating mode of SS were
investigated theoretically. Self-focusing, self-trapping, stimulated light scat-
tering (SLS), four wave mixing (FWM) [48], and related electrodynamic and
hydrodynamic effects in SA have been considered. The mechanism men-
tioned above combines the typical characteristics of the orientational and
electrostrictive nonlinearities, since it occurs without a change of a mass
density, strongly depends on the light polarization and propagation direc-
tion, and, on the other hand, has a frequency dependence of a resonance
form, short response time and the characteristic energy which is interme-
diate between the orientational energy and the bulk compression one. The
advantages of this optical nonlinearity mechanism are following.

1. Large magnitude of the cubic nonlinearity in comparison with an or-
dinary Brillouin nonlinearity due to the smaller magnitude of the cor-
responding elastic constant.

2. Short time response similar to acoustic processes in isotropic liquids.
The SS velocity s0 ∼ 104cm/s, and the relaxation time τ ∼ 10−6s for
a wave number k ∼ 103cm−1 [1, 2, 10, 11].

3. Weak temperature dependence, at least for temperatures not very close
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to the phase transition.

4. Resonant form of the frequency dependence.

5. Strong dependence on the polarization and propagation direction of
light beams due to the anisotropic dispersion relation of SS.

The results obtained are briefly enumerated below.

1. The nonlinear part of the SA refraction index responsible for the light
beam self-focusing and self-trapping is one or two orders of magnitude
greater than the one for the orientational Kerr effect and electrostric-
tion in isotropic organic liquids.

2. The stimulated scattering of two incident arbitrary polarized light
waves transforms into a partially degenerate FWM due to the split-
ting of each incident wave into the ordinary and extraordinary ones
in a strongly anisotropic SA. The light waves coupled through the SS
undergo the parametric energy exchange and cross-phase modulation.
The gain coefficient of the signal waves is two orders of magnitude
greater than the one in isotropic organic liquids. Estimations show
that for the typical values of material parameters, the gain coefficient
per unit intensity of the incident beam is ∼ (0.01÷ 10) cm/MW which
yields for the intensity 100 MW/cm2 the value of the gain coefficient
∼ ¡1÷ 103¢ cm−1 [44].

3. The nondegenerate FWM in SA due to the stimulated scattering on
the SS is also possible. It is characterized by an especially complicated
scattering spectrum due to the combination of anisotropy and nonlin-
earity. In the particular case of the counterpropagating waves and
frequency balance a phase conjugation process occurs accompanied by
the amplification of a phase-conjugate wave.

4. The light wave interference results in the creation of the dynamic grat-
ing of the layer displacement and excites a hydrodynamic flow.

5. The light - induced dynamic grating of the layer displacement, in turn,
generates a longitudinal high-frequency electric field due to the so-
called flexoelectric effect [1]. This electric field breaks the inversion
symmetry of SA and permits the second harmonic generation.

6. In a weakly conducting SA the light-induced hydrodynamic flow cru-
cially affects the electroconvection process. The electric current in SA
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is mainly due to ions with a very low mobility µ ∼ 10−10 m2/V sec
[49]. The high frequency velocity of the light-induced hydrodynamic
flow can be greater than the drift velocity of ions in a dc electric field
with the magnitude of the order of

¡
103 ÷ 104¢ V/cm. As a result,

the ac component of the electric current would be predominant, which
makes the formation of high frequency patterns possible.

To our knowledge, until now the number of experimental works on SA
nonlinear optics has been rather limited [38, 39, 50]. The theoretical results
concerning the nonlinear optical effects in SA are in a good accord with the
existing experimental results [38, 39, 50].

The paper is constructed as follows. In Section 2, the basic equations
are introduced including the SA equation of motion and the nonlinear wave
equation for the light wave. In Section 3, the light self-action effects in
SA are discussed. In Section 4, the results concerning the nonlinear wave
mixing are presented. In Section 5, the light induced electrohydrodynamic
phenomena in SA are analyzed. The conclusions are presented in Section 6.

2 Basic equations

The theoretical description of non-linear optical effects in liquid crystals is
based on the simultaneous solution of the Maxwell equations containing the
non-linear polarization due to the mechanisms specific for liquid crystals and
the equation of motion of the liquid crystal medium itself in the presence of
the optical radiation [24, 48]. We are interested in the non-linear phenomena
related to SS as it was mentioned above. We start with the hydrodynamics
of SA thoroughly formulated in a number of works [1, 2, 50 - 54]. The X,Y
axes are chosen to be in the layer plane, and the Z axis coincides with the
optical axis perpendicular to the layer. Assuming SA to be an incompressible
anisotropic liquid far from the phase transition point and under the constant
temperature, the system of equations describing the SA hydrodynamics has
the form [1, 2]

∂vi
∂xi

= 0 (1)

ρ
∂vi
∂t

= − ∂Π

∂xi
+ Λi +

∂σ0ik
∂xi

(2)

Λx = Λy = 0,Λz = −δF
δu

(3)

σ0ik = α0Allδik+α1Azzδiz+α4Aik+α56 (Azkδiz +Aziδkz)+α7Allδizδkz (4)
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Aik =
1

2

µ
∂vi
∂xk

+
∂vk
∂xi

¶
(5)

vz =
∂u

∂t
(6)

where vi,ρ,Π,Λi, σ0ik, αi, F are the hydrodynamic velocity, the mass density,
the pressure, the generalized force density, the viscous stress tensor, the
viscosity Leslie coefficients, and the free energy density, respectively. In the
presence of an external electric field E the free energy density F has the
form [2, 55]

F =
1

2
B

µ
∂u

∂z

¶2
+
1

2
K

µ
∂2u

∂x2
+

∂2u

∂y2

¶
− 1

8π
εikEiEk (7)

where K is the elastic constant related to molecular orientation, and εik is
the dielectric constant tensor linear on the layer deformations [1, 2, 6, 52]

εxx = εyy = ε⊥ + a⊥
∂u

∂z
, εzz = εk + ak

∂u

∂z
(8)

εxz = εzx = −εa∂u
∂x

, εyz = εzy = −εa∂u
∂y

, εa = εk − ε⊥ (9)

where εk, ε⊥ are the diagonal components of a uniaxial SA dielectric tensor
εik along the optical axis and normal to it, respectively, and a⊥, ak are
the phenomenological dimensionless coefficients of an order of magnitude
of unity [6]. In our case the bulk compression is ignored Π = 0. For the
typical values of the layer compression elastic constant B ∼ 108erg/cm3

and the Frank elastic constant K ∼ 10−6dyn [1, 2], Kk2 ¿ B for any
reasonable value of the orientational excitation wave number k. We are
interested in the case when ∂u/∂z 6= 0 and the contribution of the purely
orientational mode energy into (7) can be neglected. The layer continuity
condition (6) is specific to SS propagation in SA when the slow permeation
process can be ignored [1, 2]. Taking into account these assumptions and
combining equations (1)-(9), we obtain the equation of motion for the layer
normal displacement u (r,t) [40]. The detailed derivation of this equation is
presented in Appendix A. The equation of motion has the form

−ρ∇2∂
2u

∂t2
+

·
α1∇2⊥

∂2

∂z2
+
1

2
(α4 + α56)∇2∇2

¸
∂u

∂t
+B∇2⊥

∂2u

∂z2
=

=
1

8π
∇2⊥

½
∂

∂z

£
a⊥
¡
E2x +E2y

¢
+ akE2z

¤− 2εa · ∂

∂x
(ExEz) +

∂

∂y
(EyEz)

¸¾
(10)
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where ∇2⊥ =
¡
∂2/∂x2

¢
+
¡
∂2/∂y2

¢
. The left-hand side (LHS) of equation

(10) is the SS equation including the viscous damping terms. Its solution is
the SS wave with the dispersion relation [1]

Ω = s0ks sinϕ cosϕ (11)

where Ω, s0 =
p
B/ρ,ks, ϕ are the SS frequency, velocity, wave vector, and

the angle between ks and the layer plane, respectively. It is seen that SS
wave vanishes both in the case of propagation direction parallel to the layers
and in the case of propagation direction perpendicular to them [1, 2]. The
right-hand side (RHS) of (10) shows that the SS excitation with light waves
is possible only in the case of their oblique incidence. The attenuation time
τ of the SS wave in the high frequency limit Ωτ À 1 is

τ = 2ρ

"
α1

¡
k2sx + k2sy

¢
k2sz

k2s
+
1

2
(α4 + α56) k

2
s

#−1
. (12)

For the typical values of the viscosity Leslie coefficients αi ∼ 1Poise and mass
density ρ ∼ 1gcm−3 [1, 2, 52], this condition holds for ks up to 103cm−1. In
the particular case when ∂u/∂z = 0, the large elastic energy term related to
the layer compression vanishes and we should take into account the small
orientational energy, which is similar to the NLC case. Then the equation
of motion reduces to the following one [42]

ρ
∂2u

∂t2
− 1
2
(α4 + α56)∇2⊥

∂u

∂t
+K∇2⊥u =

=
εa
4π

·
∂

∂x
(ExEz) +

∂

∂y
(EyEz)

¸
(13)

The propagation and interaction of light waves in a non-linear medium
is described by the Maxwell equations with the non-linear electric induction
DNL. These equations yield the wave equation

curlcurlE+
1

c2
∂2DL

∂t2
= − 1

c2
∂2DNL

∂t2
(14)

where c is the speed of light in vacuum, DL =
¡
ε⊥Ex, ε⊥Ey, εkEz

¢
, and

DNL
x = a⊥

∂u

∂z
Ex − εa

∂u

∂x
Ez, D

NL
y = a⊥

∂u

∂z
Ey, D

NL
z = ak

∂u

∂z
Ez − εa

∂u

∂x
Ex.

(15)
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For the analysis of the light wave E = e [A (z) exp i (kr−ωt) + c.c.], we use
the slowly varying amplitude approximation (SVA) [48]:¯̄̄̄

∂2A

dz2

¯̄̄̄
¿
¯̄̄̄
k
∂A

∂z

¯̄̄̄
. (16)

Here e,k,ω,A = |A| exp iγ are the polarization unit vector, wave vector,
frequency, complex slowly varying amplitude of the light wave, respectively,
and c.c. stands for complex conjugate. In the case of a light beam with A (r),
the condition (16) is used together with the quasi-optical approximation [48]¯̄̄̄

k
∂A

∂z

¯̄̄̄
∼ ¯̄∇2⊥A¯̄ . (17)

The slowly varying amplitudes of an infinite plane wave and a light beam
propagated in a non-linear medium are described respectively with the fol-
lowing reduced equations [48]

−2ikz ∂A
∂z

·
1− ez

(ke)

kz

¸
=
³ω
c

´2 ¡
kDNL

¢
exp (−ikr) (18)

−2ikz ∂A
∂z
−∇2⊥A =

³ω
c

´2 ¡
kDNL

¢
exp (−ikr) . (19)

3 Light self-action effects

The passage of a laser beam through a nonlinear optical material results
in the intensity-dependent phase shift due to the intensity dependence of
the refractive index [48]. This phenomenon causes the so-called self-action
effects [56], namely:

1. self-focusing, or a change of the amplitude form;

2. self-trapping, or the transforming of a light beam into a stable filament
with a constant width;

3. self-phase modulation, or a phase change;

4. change of the state of a beam polarization.
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3.1 Self-focusing and self-trapping

We start with the case of the stationary self-focusing assuming the beam
amplitude to be time-independent [48]. Such an approach is valid when the
pulse duration τp is much larger than the typical nonlinearity relaxation time
[56]. In our case this relaxation time τ (12) can be used with a characteristic
perturbation dimension w instead of k−1s .We choose the SA optical axis to be
the Z axis and the SA layer plane to be theXY plane. TheXZ plane can be
chosen to be the light beam incidence plane due to the D∞ symmetry of SA
[1]. In a uniaxial medium two types of a light wave with different dispersion
relations can propagate [55]: an ordinary wave with the dispersion relation

k2 =
ω2

c2
ε⊥ (20)

and an extra-ordinary wave with the dispersion relation

k2⊥ε⊥ + k2zεk =
ω2

c2
ε⊥εk. (21)

In a uniaxial medium an extra-ordinary wave is polarized in the incidence
plane, while the transverse component Eo perpendicular to the incidence
plane containing the optical axis behaves as an ordinary wave. The light
wave splitting into two waves is shown in Fig. 4.

For a slab-shaped [57] light beam they have the form

Ey = Ao (r) exp i (kor−ωt) + c.c. (22)

Ee = ee [Ae (r) exp i (ker−ωt) + c.c.] (23)

where ee,ko,ke are the extra-ordinary wave polarization vector, the ordinary
and extra-ordinary wave vectors, respectively. Equation of motion (10) in
the chosen geometry and in the steady-state case reduces to

B
∂2u

∂z2
=
1

4π

(·¡
ake2ez + a⊥e2ex

¢ ∂

∂z
− 2εaeexeez ∂

∂x

¸
|Ae|2 + a⊥

∂ |Ao|2
∂z

)
.

(24)
The simultaneous solution of equations (19) and (24) for the slowly vary-
ing amplitudes Ao,e is hardy possible, in particular, since the ordinary and
extra-ordinary beams propagate in different directions. The ordinary beam
propagation direction coincides with its wave vector ko and may be described
with the coordinates

x0 = (kor) /k0 = x sin θo + z cos θo; z
0 = −x cos θo + z sin θo (25)
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Figure 4: An arbitrary light wave is propagating in a uniaxial SA. Here
Ee,Eo,ke,ko are the electric field and the wave vectors of the extraordinary
and ordinary wave, respectively.

where θo is the angle between ko and the Z axis. The extraordinary beam
in anisotropic medium propagates along the beam vector [55], which is de-
termined by the angle θe = arctan

¡¡
ε⊥/εk

¢
tan θ1

¢
where θ1 is the angle

between ke and the Z axis. We define this direction with the coordinates

x00 = x sin θe + z cos θe; z
00 = −x cos θe + z sin θe. (26)

Considering separately the ordinary and extra-ordinary beams one can ob-
tain stable spatially localized solutions of the non-linear Schredinger equa-
tion (NSE) [58]. The self-focusing is possible for both the ordinary and
extra-ordinary beams since the coefficients at the NSE cubic term are pos-
itive definite. The nonlinear parts no2 and ne2 of the refractive indices in
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both cases have the form, respectively [46, 47]

no2 =
a2⊥

8πBko
;ne2 = h2e

·
8πB

p
ε⊥εk

µ
1 +

εa
ε⊥

eez sin θe

¶
sin2 θe

¸−1
(27)

where he =
h
a⊥ (eex)2 + ak (eez)

2
i
sin θe + 2εaeexeez. For the typical values

of material parameters, ε⊥, εk ∼ 2 [24], a⊥, ak ∼ 1 [6], the nonlinear part
(27) of of the refractive index may reach 3 × 10−9esu which is up to three
orders of magnitude larger than a similar quantity in isotropic organic liquids
[56, 57]. The localized self-trapped solutions, or the so-called spatial solitons
[59], for the ordinary and extra-ordinary beams have the form, respectively
[46, 47],

Ao = |A|max exp i
"
a2⊥ |A|2max ω2
16πBc2ko

x0
#µ
cosh

·
a⊥ |A|max ω
2
√
2πBc

z0
¸¶−1

(28)

Ae = |Ae|max exp i
"

h2e |A|2max ω2
16πBlekc2 (1 + (εa/ε⊥) eez sin θe) sin2 θe

x00
#

×
Ã
cosh

"
he |A|max ω

2c
p
2πB (1 + (εa/ε⊥) eez sin θe) sin θe

z00
#!−1

(29)

where lek = kek (1 + (εa/ε⊥) eez sin θe)
−1. The widths wo and we of these

solitons are, respectively,

wo =
2
√
2πBc

a⊥ |A|max ω
;we =

2c
p
2πB (1 + (εa/ε⊥) eez sin θe) sin θe

he |A|emax ω
. (30)

Numerical evaluations show that for the power Pcr ∼ 2×102Watt the width
wo, we ∼ 10−2cm. The SA samples of such a thickness are feasible [38, 11].
The ordinary light beam self-trapping in the form of a bright surface wave

A (z) = |A (z0)|
·
cosh

µ
z − z0
wo

¶¸−1
(31)

at the boundary z = 0 of an isotropic homogeneous medium z < 0 and the
SA cladding z > 0, is also possible when the medium dielectric constant
εs > ε⊥ [46, 47]. Here z0 > 0 is the intensity maximum position inside the
SA cladding.
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3.2 Spatial self-phase modulation and polarization change

In the specific case when the layer normal deformation is absent: du/dz = 0,
and the arbitrary polarized light wave is propagated in a layer plane XY
the spatial phase modulation occurs due to the interaction of the optical
field components that are parallel and perpendicular to the optical axis [47].
These components excite the static grating of layer tangential deformations
similar to the director deviations in NLC. The optical field components
coupled through this grating undergo spatial phase modulation. Due to the
field-induced phase change, the phase difference between the ordinary and
extra-ordinary beam is changing, which results in the polarization change of
the light beam propagated in SA. Using the Stokes parameters [60] S0,1,2,3
we get in our case [47]

S0,1 = |Ao|2 ± |Ae|2 , S2 = 2 |AoAe| cos (, S3 = 2 |AoAe| sin ( (32)

where the phase difference ( is caused by anisotropy and nonlinearity [47]

( = ∆kxx+
³ω
c

´2 ε2ae
2
x

8πK (∆kx)
2 koxkex

³
k2ox |Ao|2 − k2ex |Ae|2

´
x (33)

where ∆kx = kox − kex. It is seen from (33) that the first term is caused by
the SA anisotropy as in any optically uniaxial medium, except that it has
in our case a larger magnitude due to the extremely large optical anisotropy
of liquid crystals ∆ε ∼ 0.2 [24]. The second term is light-induced, and it
emerges due to the spatial self-phase modulation related to layer tangential
deformations. The polarization ellipse form and axes directions character-
ized with the orientation angle Ψ and ellipticity angle χ [60] depend on the
distance in the following way

tan 2Ψ =
S2
S1
=
2 |AoAe| cos (
|Ao|2 − |Ae|2

, tan 2χ =
S2
S0
=
2 |AoAe| cos (
|Ao|2 + |Ae|2

(34)

which clearly shows the nonlinear change of the light beam polarization. For
a moderate intensity level the nonlinear terms can be singled out explicitly
by the expansion in powers of cos (.

4 Non-linear wave-mixing in SA

4.1 General approach

We consider the non-linear optical wave-mixing in SA due to the specific
mechanism of an optical non-linearity related to a light-induced layer nor-
mal displacement u (r, t) [40 - 47]. In the simplest case when both light waves
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are polarized in either the incidence plane, or normal to it, a two-wave mix-
ing occurs [40 - 45]. In the general case, an arbitrary polarized light wave
propagating in a uniaxial medium splits into ordinary and extra-ordinary
waves as it was mentioned above. As a result, the non-linear two-wave mix-
ing transforms into a kind of FWM defined as a partially degenerate FWM
since there are four waves with two essentially different frequencies [44]. In
the case of four incident waves with frequencies differing by a quantity close
to the SS frequency, a kind of Brillouin-enhanced FWM occurs [45]. In all
these cases the interfering light waves create a dynamic grating of a layer
normal displacement u (r, t) according to equation (10). In the case of the
partially degenerate FWM such a grating consists of four harmonics with
the same frequency and different wave vectors. This grating reduces to the
one single harmonic in the case of an ordinary two-wave mixing. In the case
of the Brillouin-enhanced FWM, there exist 6 harmonics with the essentially
different frequencies and wave vectors. The fundamental light waves undergo
the cross-phase modulation and parametric amplification (attenuation) due
to the coupling through the light-induced dynamic grating u (r, t). A spec-
trum of Brillouin-like harmonics with the Stokes and anti-Stokes frequencies
and combination wave vectors emerges.

The total electric field Etot in SA can be presented as a finite number
of harmonics with SVA including the fundamental waves Em, additional
components E0m of the fundamental waves caused by the combined effect of
anisotropy and nonlinearity, and Brillouin-like scattered harmonics fSl :

Etot =
X
m

¡
Em +E

0
m

¢
+
X
l

fSl . (35)

The light absorption in SA can be neglected [24]. The fast relaxation of
SS due to SA high viscosity makes it possible to consider the stimulated
light scattering (SLS) on SS as a steady state process and ignore the time
dependence of SVA. The non-linear part of the electric induction DNL (15)
represents a Fourier series containing a finite number of harmonics

DNL =
X
l

¡
DNL

l exp iψl + c.c.
¢
. (36)

The non-linear interaction between the light waves is efficient only in the
case of the phase matching which occurs when the energy and momentum
conservation conditions are fulfilled for the frequencies and wave vectors of
the coupled waves [48]. In the case of SLS on the light-induced dynamic
grating these conditions are met automatically for the frequencies and wave
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vectors of the fundamental waves. As a result, the non-linear inductionDNL

(36) and the field Etot contain both the phase matched terms and some
other terms with the combination frequencies and wave vectors. The non-
linear induction DNL gives rise to three types of non-linear optical effects:
(i) the parametric amplification and cross-phase modulation determined by
the phase matched terms DNL components parallel to the electric field of
the fundamental waves; (ii) the additional component generation caused by
the phase matched terms DNL components perpendicular to the electric
field of the fundamental waves; (iii) the Brillouin-like scattering due to the
non-linear terms with the combination frequencies and wave vectors. Sub-
stituting (35) and (36) into wave equation (14), taking into account the SVA
approximation (16), and equating the phase matched terms in the both sides
of (14), we obtain three sets of equations describing the effects mentioned
above [44, 45, 47]: the reduced equations for the SVA of the fundamental
waves, the wave equations for the additional components E0m, and the wave
equations for the scattered harmonics fSl . In our case the cubic susceptibility
represents a complex tensor [45], which does not permit an explicit solution.
The system has only one integral of motion, and as a result, each phase
evolves independently. The SS modes are passive, or ”slaved”, and the scale
separation exists between the dissipation and excitation processes [61]. The
energy exchange occurs on a SS wave excitation length LE À LD = s0τ
where LD is the SS dissipation length, and it is non-reciprocal, unlike the
situation in conservative systems [62].

4.2 Partially degenerate FWM

Consider two incident light waves EI
1,2 propagated from a free space z < 0

to SA filling a semi-space z > 0:

EI
1,2 = e

I
1,2

£
AI
1,2 exp i

¡
kI1,2r− ω1,2t

¢
+ c.c.

¤
(37)

where kI1,2 = ω1,2/c. We define for the sake of definiteness ω1 > ω2, ∆ω =
ω1 − ω2 ¿ ω1, and the unit polarization vectors eI1,2 are assumed to be
three-dimensional. The plane of incidence for one of the waves (37) may be
chosen to be the XZ plane which is possible due to the D∞ symmetry of SA
permitting any rotation around the optical Z axis [1]. The second wave in
general case is propagated in an arbitrary plane and has a three-dimensional
wave vector. In this geometry, each wave inside SA splits into two waves:
an ordinary wave polarized perpendicular to the optical axis and an extra-
ordinary one which possesses the component parallel to the optical axis, as
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was mentioned above. As a result, four waves propagate in SA:

Eo,e
1 = eo,e1 [Ao,e

1 (z) exp i (ko,e1 r− ω1t) + c.c.] (38)

Eo,e
2 = eo,e2 [Ao,e

2 (z) exp i (ko,e2 r− ω2t) + c.c.] (39)

Here the slowly varying complex amplitudes have the form

Ao,e
1,2 (z) =

¯̄̄
Ao,e
1,2 (z)

¯̄̄
exp iγo,e1,2 (40)

The geometry of the problem is shown in Fig.5.

Figure 5: The geometry of SLS in SA. Here Ee,o
1 ,Ee,o

2 are extraordinary and
ordinary components of each incident light wave, and u (x, y, z, t) is a layer
normal displacement.

The solution of reduced equations (18) for the waves (38), (39) with the
non-linear polarization (15) yields the integral of motion [44]

W o
1 +W e

1 +W o
2 +W e

2 = 1 (41)
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where

W o,e
1,2 =

c2lo,e1,2
ω21,2I0

¯̄̄
Ao,e
1,2

¯̄̄2
(42)

I0 =
c2

ω21

³
lo1 |Ao

1|2 + le1 |Ae
1|2
´
+

c2

ω22

³
lo2 |Ao

2|2 + le2 |Ae
2|2
´
= const (43)

and lo1,2 = ko1,2z, l
e
1,2 = ke1,2z

£
1− ee1,2z

¡
ke1,2e

e
1,2

¢
/ke1,2z

¤
. The system of the

coupled reduced equations of the type (18), along with the condition (41),
yields [44]

W o,e
1 (z) =W o,e

1 (0) exp

− zZ
0

¡
β3,2W

o,e
2 + β4,1W

e,o
2

¢
dz0
 (44)

W o,e
2 (z) =W o,e

2 (0) exp

 zZ
0

¡
β3,2W

o,e
1 + β1,4W

e,o
1

¢
dz0

 (45)

γo,e1 (z)− γo,e1 (0) = −1
2

zZ
0

(δ3,2W
o,e
2 + δ4,1W

e,o
2 ) dz0 (46)

γo,e2 (z)− γo,e2 (0) = −1
2

zZ
0

(δ3,2W
o,e
1 + δ1,4W

e,o
1 ) dz0 (47)

where the coupling constants are

βj =
ω21ω

2
2I0∆ωh

2
j (∆kj⊥)

2 Γj

4πρ (∆kj)
2 |Gj |2 c4dj

> 0; δj =
ω21ω

2
2I0

h
(∆ω)2 − Ω2j

i
h2j (∆kj⊥)

2

4πρ (∆kj)
2 |Gj |2 c4dj

(48)
d1 = le1l

o
2, d2 = le1l

e
2, d3 = lo1l

o
2, d4 = lo1l

e
2,

h1 = a⊥∆k1zee1xe
o
2x − εa

¡
∆k1xe

e
1ze

o
2x +∆k1ye

e
1ze

o
2y

¢
(49)

h2 = a⊥∆k2zee1xe
o
2x + ak∆k2xee1ze

e
2z−

−εa
£
∆k2x (e

e
1xe

e
2z + ee1ze

e
2x) +∆k2ye

e
1ze

e
2y

¤
(50)

h3 = a⊥∆k3zeo2y; h4 = a⊥∆k4zee2y − εa∆k4ye
e
2z (51)

∆k1 = k
e
1 − ko2; ∆k2 = ke1 − ke2; ∆k3 = ko1 − ko2; ∆k4 = ko1 − ke2. (52)
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The denominator of the Fourier transform of SS Green function Gj is given
by

Gj = (∆ω)
2 − Ω2j + i∆ωΓj ; j = 1, .., 4 (53)

where the SS frequency Ωj and the temporal decay constant Γj have the
form, respectively

Ω2j = s20
(∆kj⊥)2 (∆kjz)2

(∆kj)
2 (54)

Γj =
1

ρ

"
α1
(∆kj⊥)2 (∆kjz)2

(∆kj)
2 +

1

2
(α4 + α56) (∆kj)

2

#
. (55)

The dynamic grating wave vectors ∆kj are determined by relations (52) and
(∆kj⊥)2 = (∆kjx)2 + (∆kjy)2. The comparison of equations (41) and (44),
(45) shows that

z →∞, W o,e
1 → 0,W o

2 +W e
2 → 1 (56)

The limiting values (56) show that, due to the non-linear wave mixing,
the parametric entire energy transfer occurs from the pumping pair of light
waves with the higher frequency ω1 to the signal pair of waves with the lower
frequency ω2. The coupled light waves form a macroscopically squeezed
state. Relations (46) and (47) manifest a coupled light waves cross phase
modulation. It is seen from equations (44), (45), (48) and (53) that the
especially strong coupling between the pair of light waves occurs in the
resonance case determined by the condition

(∆ω)2 = Ω2j . (57)

The phase of the pumping wave is rapidly increasing and tends to infinity
while the signal wave phase tends to a finite constant value. The detailed
analysis of the reduced eqautions is presented in Appendix B.

Consider the practically important case when each of the incident light
waves (38), (39) is polarized predominantly in the incidence plane or per-
pendicular to it while the other components are small. For the sake of
definiteness, we assume that the pumping wave EI

1 is mainly polarized in
the incidence plane and the signal wave EI

2 is mainly polarized normal to
its incidence plane [44]. In such a case we get

W e
1 ÀW o

1 , W
o
2 ÀW e

2 . (58)

The quantities W e
1 and W o

2 can be expanded into a series

W e
1 =W e

10 +W e
11 + ..., |W e

11| ¿ |W e
10| (59)
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W o
2 =W o

20 +W o
21 + ..., |W o

21| ¿ |W o
20| (60)

because in the general case all intensities are finite and converge at large z
as it is seen from (56). The chain of the coupled reduced equations yields
in the first and the second approximations, respectively [44]

W e
10 =

[W e
1 (0) +W o

2 (0)]

2
[1− tanh (η − η0)] ,

W o
20 =

[W e
1 (0) +W o

2 (0)]

2
[1 + tanh (η − η0)] (61)

W e
2 =W e

2 (0)

·
cosh (η0) exp (η)

cosh (η − η0)

¸b1
, W o

1 =W o
1 (0)

·
cosh (η0) exp (−η)
cosh (η − η0)

¸b2
(62)

W e
11 =

1

[cosh (η − η0)]
2

ηZ
0

dη0
£
cosh

¡
η0 − η0

¢¤2 £
1− tanh ¡η0 − η0

¢¤
× [W o

1 +W e
2 (1− b1)−W o

1 (0)−W e
2 (0)] (63)

W o
21 =

1

[cosh (η − η0)]
2

ηZ
0

dη0
£
cosh

¡
η0 − η0

¢¤2 £
1 + tanh

¡
η0 − η0

¢¤
× [W o

1 (0) +W e
2 (0)−W e

2 −W o
1 (1− b2)] (64)

where b1,2 = β2,3/β1, η = β1 [W
e
1 (0) +W o

2 (0)] z/2 and the crossing point z0
is determined by

z0 =
1

β1
ln

·
W e
1 (0)

W o
2 (0)

¸
. (65)

The explicit evaluation of integrals (63) and (64) is hardly possible. However,
the analysis shows that the quantities W e

11,W
o
21 are finite, small and satisfy

the conservation law (41). The system is stable with respect to both the
thickness of SA sample and the pumping intensity [44]. The phases γo,e1 of
the pumping waves Eo,e

1 rapidly increase at η → ±∞ which means that the
pumping waves depletion is accompanied by their amplitudes oscillations.
The phases γo,e2 of the signal waves Eo,e

2 tend to a constant value at large η,
and the amplification saturates at almost constant phases.

The spectrum of the Brillouin-like scattered harmonics fSl = F
S
l exp iψl+

c.c. consists of 12 terms with the Stokes and anti-Stokes frequencies ωS =
2ω2−ω1 and ωA = 2ω1−ω2 and 8 terms with the fundamental frequencies
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ω1,2 and combination wave vectors. These harmonics have the following
phases ψl [44]:

[(2ke2 − ko,e1 ) r−ωSt] ; [(2ko2 − ko,e1 ) r−ωSt] ; [(ko2 + ke2 − ko,e1 ) r−ωSt] (66)

[(2ke1 − ko,e2 ) r−ωAt] ; [(2ko1 − ko,e2 ) r−ωAt] ; [(ko1 + ke1 − ko,e2 ) r−ωAt] (67)

[(ke2 − ko2 + ko,e1 ) r− ω1t] ; [(ko2 − ke2 + ko,e1 ) r− ω1t] (68)

[(ke1 − ko1 + ko,e2 ) r− ω2t] ; [(ko1 − ke1 + ko,e2 ) r− ω2t] . (69)

The additional components fo1 , f
e
1y and f

o
2z emerging due to both the anisotro-

py and nonlinearity, are driven by the non-linear part of the electric induc-
tion DNL. The explicit expressions of the scattered harmonics and addi-
tional components are too involved [44], and we do not present them here.
All these harmonics are spatially localized and vanish as z →∞.

In the particular case when two coupled waves are strictly polarized
either in the incidence plane, or normal to it, the reduced equations can
be solved explicitly, and the solution in a closed form has been obtained
[40]-[43]. For the sake of definiteness, consider the two wave mixing of the
extraordinary wave Ee

1 polarized in the incidence plane and ordinary wave
Eo
2 polarized perpendicular to it. Then the conservation law (41) reduces to

W e
1 (0) +W o

2 (0) = 1 (70)

and the solution takes the form

W e
1 =

1

2
[1− tanh (η − η0)] ,W

o
2 =

1

2
[1 + tanh (η − η0)] (71)

γe1 − γe1 (0) =
δ1
2β1

ln

·
cosh (η0) exp (−η)
cosh (η − η0)

¸
(72)

γo2 − γo2 (0) =
δ1
2β1

ln [cosh (η0) exp (−η) cosh (η − η0)] . (73)

The optical transmission losses in SA are caused mainly by two mecha-
nisms: light absorption and light scattering on the orientational fluctua-
tions [24]. The off-resonance light absorption in SA is comparatively small
∼ ¡10−2 ÷ 10−1¢ cm−1, while the orientational scattering in SA is consid-
erably less than in NLC due to the higher degree of a molecular ordering
[24]. Hence, the losses can be neglected when the coupling of strong incident
waves is considered. However, it is instrumental to evaluate the threshold of
the Brillouin like stimulated light scattering accompanied by the excitation

326



of a scattered Stokes wave Ee
2 and SS wave by the strong pumping wave E

e
1

(23)

u (r, t) = U (z) exp i (ksr− Ωt) + c.c. (74)

Analysis [41] shows that the excitation of Ee
2 and u (r, t) occurs when

|Ae
1|2
B

>
4πk2szΓ2

h
ε0⊥ (e

e
2x)

2 + ε0k (e
e
2z)

2
i

h22eΩ
(75)

where ε0⊥, ε
0
k are the imaginary parts of the permittivity describing the light

absorption. Inequality (75) is similar to the condition of the stimulated
Brillouin scattering on an ordinary sound [63, 64]. For SA, the losses caused
by orientational scattering can be neglected [24]. The numerical estimations
show that the threshold intensity value c |Ae

1thr|2 /4π ∼ 1MWcm−2 which is
less than the intensity threshold for an ordinary sound excitation in organic
liquids such as n-hexane, carbon disulfide, etc. [63]. The amplitude gain
coefficient g2 has the form [41]

g2 =
|Ae
1|2 ω22Ωh22e

8πle2c
2k2szΓ2

. (76)

In the particular case when both light waves

E1 = e1 [A1 (x) exp i (k1xx+ k1yy − ω1t) + c.c.] (77)

E2 = Ez = A2 (x) exp i (k1xx+ k1yy − ω2t) + c.c. (78)

are propagated in a layer plane of a planary oriented [1] SA sample, a stim-
ulated scattering occurs on a so-called undulation mode [42]. In such a case
SS wave vanishes since ksz = 0, ∂u/∂z = 0 and the overdamped undulation
mode exists

u = U (x) exp i (∆kr−∆ωt) + c.c. (79)

determined by equation (13). The SLS is similar to the one on the director
oscillations in NLC and does not have a resonant character. The expressions
for the amplitudes A1,2 (x) have been obtained [42]. The amplification of
the signal wave (78) is the strongest when

∆ω = ω1 − ω2 ¿ Γ2 ∼ Ω2. (80)
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4.3 Four wave mixing in SA

Consider now a nondegenerate FWM in SA when four fundamental light
waves

Em = em [Am exp i (kmr− ωmt) + c.c.] , m = 1, .., 4 (81)

have close frequencies with the difference

∆ωmn = ωm − ωn ∼ s0
c
ωm ¿ ωm. (82)

The geometry of the problem is similar to the one shown in Fig. 5 except
that all light waves now have different frequencies. Suppose for the sake of
definiteness that ω1 < ω2 < ω3 < ω4. Such a case is essentially different from
the partially degenerate FWM [45]. The light wave with the lowest frequency
ω1 is amplified up to a saturation level, the light wave with the largest
frequency ω4 is depleted while the waves with the intermediate frequencies
ω2,3 are compressed in space forming the soliton-like envelopes [45]. One may
say that the four coupled waves form a kind of macroscopic squeezed states.
Evidently, each arbitrary polarized wave in SA splits into an ordinary and
extra-ordinary wave as was mentioned above, and FWM transforms into
eight wave coupling. We do not discuss such a case and assume that all
fundamental waves (81) are either polarized perpendicular to the incidence
plane XZ and propagate as ordinary waves, or belong to the incidence plane
XZ and behave as extra-ordinary waves. In the first case the polarization
vectors em and the dispersion relations are, respectively

em = e
o
m = (emx, emy, 0) ; (k

o
m)

2 =
ω2m
c2

ε⊥. (83)

In the second case we get

em = e
e
m = (e

e
m⊥, e

e
mz) ;

(kem⊥)
2

εk
+
(kemz)

2

ε⊥
=

ω2m
c2
; kem⊥ = (kmx, kmy) (84)

Both cases differ by the form of the coupling constants hmn. We consider
first the extra-ordinary wave mixing. The dynamic grating of a layer dis-
placement consisting of 6 harmonics has the form [45]

u (r,t) =
X

m,n,m6=n
Umn exp i (∆kmnr−∆ωmnt) (85)

where ∆kmn = km − kn,

Umn =
ihemn (∆kmn⊥)2

4πρGmn (∆kmn)
2AmA

∗
n (86)
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hmn =
£
a⊥ (eem⊥e

e
n⊥) + ak (eemze

e
nz)
¤
∆kmnz−

−εa [eemz (∆kmne
e
n⊥) + eenz (∆kmn⊥een⊥)] (87)

Gmn = (∆ωmn)
2 − Ω2mn + i∆ωmnΓmn; Ω

2
mn = s20

(∆kmnz∆kmn⊥)2

(∆kmn)
2 (88)

Γmn =
1

ρ

"
α1
(∆kmnz∆kmn⊥)2

(∆kmn)
2 +

(α4 + α56)

2
(∆kmn)

2

#
. (89)

Note that in the case of the ordinary wave mixing the coupling constants
have the form homn = a⊥∆kmnz (e

o
m⊥e

o
n⊥).

The detailed analysis of the system of reduced equations describing the
FWM shows that the parametric amplification with saturation of only one
wave E1 occurs while three other waves E2,3,4 undergo total depletion [45]

z →∞, W1 → 1,W2,3,4 → 0 (90)

where

Wm =
lm
I0

³ω
c

´−2 |Am|2 ; I0 =
4X

m=1

lm

³ω
c

´−2 |Am|2 = const. (91)

The waves with the intensities W2,3 and the intermediate frequencies ω2,3
form the spatially localized soliton-like states, if the pumping wave E4 is
strong enough at the input z = 0. In the excitation interval 0 < z <
min (z02, z03) three waves E1,2,3 are amplified where z02, z03 are the coor-
dinates of the points of maximum for W2,3. The intensities W1,2,3,4 are
non-periodical and stable with respect to the sample thickness and a pump-
ing intensity [45]. Consider the behavior of the phases γm. If for all m,n
(∆ωmn)

2 > Ω2mn, then all phase shifts are negative and the medium is defo-
cusing [48]. In the opposite case (∆ωmn)

2 < Ω2mn the medium is a focusing
one [48].

Consider the important case when the pumping wave E4 and the signal
wave E1 are much stronger than the idler waves E2,3: W1,4 À W2,3. Then
the chain of equations similar to the previous section can be obtained, and
the solution up to the second approximation has the form [45].

W10,40 =
J1
2

·
1± tanh

·
β41J1
2

(z − z1)

¸¸
(92)

W2,3 =W2,3 (0) exp (a1,2η)

·
cosh (η1)

cosh (η − η1)

¸c1,2
(93)
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W11 =
1

β41 [cosh (η − η1)]
2

ηZ
0

£
cosh

¡
η0 − η1

¢¤2 £
1 + tanh

¡
η0 − η1

¢¤×
× [β41J2 +W2 (β21 − β41) +W3 (β31 − β41)] dη

0 (94)

W41 = − 1

β41 [cosh (η − η1)]
2

ηZ
0

£
cosh

¡
η0 − η1

¢¤2 £
1− tanh ¡η0 − η1

¢¤×
× [β41J2 +W2 (β42 − β41) + εW3 (β43 − β41)] dη

0 (95)

where W1,4 =W10,40+W11,41+ ...,W10,40 À |W11,41| , J1 =W1 (0)+W4 (0) ,
J2 =W2 +W3 +W11 +W41 = const,

η =
β41J1z

2
, z1 =

1

β41J1
ln

·
W4 (0)

W1 (0)

¸
(96)

a1 =
β42 − β21

β41
, a2 =

β43 − β31
β41

, c1 =
β42 + β21

β41
, c2 =

β43 + β31
β41

(97)

βmn =
ω2mω

2
nI0 (h

e
mn)

2∆ωmnΓmn (∆kmn⊥)2

4πρc4lmln |Gmn|2 (∆kmn)
2 . (98)

The quantities βmn play a role of gain coefficients, and their magnitudes
reach maximal values in the resonance case (∆ωmn)

2 = Ω2mn. Then we
obtain

|βresmn| =
ω2mω

2
nI0 (h

e
mn)

2 |Ωmn|
4πBc4lmlnΓmn (∆kmnz)

2 ∼
ωmPε

2
a |Ωmn|

Bc2Γmn
√
εkε⊥

. (99)

Consider expressions (93). It is easy to see that W2,3 → 0 as η → ∞ since
a1 < c1 and a2 < c2. The analysis shows [45] that W2,3 reach their maxima
at the points z02,03, determined by

z02 =
1

β41J1
ln

·
β42W4 (0)

β21W1 (0)

¸
, z03 =

1

β41J1
ln

·
β43W4 (0)

β31W1 (0)

¸
(100)

that exist if β42W4 (0) > β21W1 (0) and β43W4 (0) > β31W1 (0).
The phases γm (z) have the form [45]

γ1 = −
δ14
2β41

ln

·
cosh (η1) exp (η)

cosh (η − η1)

¸
, (101)

γ2 = −
1

2
ln

·
exp

µ
δ21 + δ24

β41
η

¶µ
cosh (η − η1)

cosh (η1)

¶µ1
¸

(102)
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γ3 = −
1

2
ln

·
exp

µ
δ31 + δ34

β41
η

¶µ
cosh (η − η1)

cosh (η1)

¶µ2
¸
, (103)

γ4 = −
δ14
2β41

ln

·
exp (η) cosh (η − η1)

cosh (η1)

¸
(104)

where

δmn =
ω2mω

2
nI0 (h

e
mn)

2∆ωmn (∆kmn⊥)2
h
(∆ωmn)

2 − Ω2mn

i
4πρc4lmln |Gmn|2 (∆kmn)

2 (105)

and µ1 = (δ21 − δ24) /β41, µ2 = (δ31 − δ34) /β41. Expressions (101)-(104)
show that the depletion of the waves E2,3,4 is accompanied by the cross
phase modulation with the infinitely increasing phases while the signal wave
phase γ1 saturates at large distances:

η →∞, γ1 → −
δ14
2β41

ln

µ
1 +

W4 (0)

W1 (0)

¶
. (106)

The so-called polarization-decoupled FWM [65] is possible in SA when
some light waves have perpendicular polarizations. Such waves do not excite
the dynamic grating (85) since the corresponding coupling constants vanish.
For example, let each light wave to be polarized normal to its incidence
plane and propagates as an ordinary one. Then the situation is possible
when one field is perpendicular to the three others, and as a result, one wave
propagates through the nonlinear SA without any change. If E1 ⊥ E2,3 and
E1 k E4, then two independent processes of the nonlinear two wave mixing
occur. The solution in such a case represents two pairs of spatial kinks (92)
with the different crossing points and excitation lengths [45].

In the particular case when the fundamental waves (81) counterpropa-
gate, an analog of Brillouin enhanced FWM (BEFWM) with a phase con-
jugation [66] is possible. For the sake of definiteness, assume that the wave
E1 is phase-conjugate with respect to the wave E4 while the waves E2,3 are
forward-going and backward-going pumping waves, respectively. They have
the form

E1 = e1 [A1 exp i (k4r+ ω1t) + c.c.] , (107)

E2 = e2 [A2 exp i (k2r− ω2t) + c.c.] (108)

E3 = e3 [A3 exp i (k2r+ ω3t+∆kfr) + c.c.] , (109)

E4 = e4 [A4 exp i (k4r− ω4t) + c.c.] (110)

where ∆kf is the wave vector mismatch of FWM process. The frequency
balance between the coupled harmonics with the same wave vectors is a
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necessary condition for the phase conjugation by stimulated scattering [66]:
∆ω31 = ∆ω42. Assuming that the pumping waves E2,3 are strong compared
with the probe wave E4 and the phase-conjugate wave E1 and using the
constant pumping approximation [48], we seek the solution in the form

A1,4 ∼ exp
·
gr ± i

(∆kfr)

2

¸
. (111)

Analysis of the linearized system of the reduced equations for A1,4 shows that
there exists the root g1 with the negative real part Re g1 < 0 which corre-
sponds to the amplification of the phase-conjugate wave E1 propagated in
the negative direction [45]. The strong amplification of the phase-conjugate
wave E1 would occur under the condition [45]

ε2a |A3|2Ω−
8πΓ−√εkε⊥

À s0
c

(112)

where Ω− = Ω (k−) = ∆ω31, Γ− = Γ− (k−) ,k− = k4 − k2. Condition
(112) can be satisfied for the typical values of the material parameters [1, 2]
when the pumping intensity ∼ 100MWcm−2 which is feasible [38]. The gain
coefficient |Re g1| is given by [45]

|Re g1| = h242Ω
−I+

8πBlΓ−
¡
k−z
¢2 (113)

where l = k4
£
1− (k4e1) k−24

¤
and

I+ =
³ω4

c

´2 |A2|2 + ³ω1
c

´2 |A3|2 . (114)

The phase-matched components of the nonlinear polarization perpendic-
ular to the electric field of the fundamental light waves generate their addi-
tional components due to the combined effects of nonlinearity and anisotropy.
The fundamental waves (81) polarized in the incidence plane generate the
additional transverse components with the unit polarization vectors e0m⊥
= [sm × em] /sm where sm ⊥ em is the beam vector of the extraordinary
wave Em. The additional components have the form [45]

E0m⊥ =
ω2m

smc2k2m

¡
DNL

m · [sm × em]
¢
. (115)

The fundamental waves (81) polarized in the layer plane and perpendicu-
lar to the propagation direction cause the longitudinal component of the
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nonlinear induction DNL
mz given by

DNL
mz = −

ÃX
n

a⊥ (em⊥en⊥)Ω2mn (∆kmn⊥en⊥)
4πBGmn∆kmnz

|An|2
!
×

×εaAm exp i (kmr− ωmt) + c.c. (116)

which, in turn, generate both transverse and longitudinal field components

E0mz =
k2m⊥¡

ε⊥k2m⊥ + εkk2mz

¢DNL
mz , E

0
m⊥ = −

kmz

¡
εkk2m + ε⊥k2m⊥

¢
ε⊥km⊥

¡
ε⊥k2m⊥ + εkk2mz

¢DNL
mz .

(117)
Evidently, the additional components E0m are finite and spatially localized
[45]: z →∞, E0m → 0.

The components of nonlinear electric induction (36) that are not phase-
matched to the fundamental waves (81) give rise to the number of Stokes
and anti-Stokes harmonics fSl = F

S
l exp iψl with the amplitudes

FS
l ∼

ε2a |AmAnAp|Ω2mn

4πB |Gmn| , z →∞,
¯̄
FS
l

¯̄→ 0. (118)

The total number of scattered Stokes and anti-Stokes harmonics is equal to
24. The multiplication of 6 harmonics of the dynamic grating (85) and 4
fundamental waves (81) yields 48 terms including 12 phase-matched to the
fundamental waves terms. The remaining 36 terms include 12 doubly degen-
erate terms of the type AmApA

∗
n exp i [(km + kp − kn) r− (ωm + ωp − ωn) t]

and 12 terms of the type A2mA
∗
n exp i [2 (kmr−ωmt)− (knr− ωnt)].

5 Light-induced electrodynamic and hydrodynamic
excitations in SA

5.1 Light-induced high-frequency longitudinal electric field

LC consist of strongly anisotropic molecules with a large electric dipole mo-
ment µe. Bend deformations of such molecules cause macroscopic electric
polarization. The external electric field creates the bend deformations of
molecules. This is the so-called flexoelectric effect, and the deformation in-
duced polarization Pf is called the flexoelectric polarization [1, 2, 67]. The
flexoelectric polarization, in turn, creates a space charge [1]. The additional
terms in the LC free energy density caused by the flexoelectric polarization
are linear on the external electric field [1] which is equivalent to the breaking
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of the inversion symmetry. In NLC the flexoelectric polarization Pf deter-
mined by the bend deformations is described by the director deviations from
the equilibrium state. It has the form [1]

Pf = ef1n (divn) + ef3 [(curln)× n] (119)

where ef1,3 ∼ µe/a are the flexoelectric coefficients. Here a is a characteristic

molecular dimension. The flexoelectric coefficients efi ∼ 10−11C/m [21].
Unlike NLC, the flexoelectric polarization Pf in SA caused by the layer
normal displacement is given by [6]

Pfx = −ef3
∂2u

∂z∂x
; Pfy = −ef3

∂2u

∂z∂y
; Pfz = −ef1∇2⊥u− ef2

∂2u

∂z2
. (120)

In the static case it is negligibly small as compared to NLC because of a large
value of the elastic constant B [6]. However, in the case of the light-induced
dynamic grating (85), in the resonance case the flexoelectric polarization
may be considerable [47]. The polarization (120) gives rise to the electric
field Ef due to the condition [55] divD = 0 where

Dx = ε⊥Efx + 4πPfx; Dy = ε⊥Efy + 4πPfy; Dz = εkEfz + 4πPfz. (121)

Using the Maxwell equations [55] it can be shown that the magnetic field
Hf related to the time dependent flexoelectric polarization (120) can be
neglected. Indeed,

Hf ∼ 1
c

∆ω

∆k
Pf ∼ s0

c

km
∆kmn

Pf ¿ Pf . (122)

Hence the high frequency flexoelectric field Ef is longitudinal and curlEf =
0. This condition along with equations (85), (86), (120), and (121) yields
[45]

Ef = − i

B

X
m,n

∆kmn

hmnΩ
2
mn

h³
ef1 + ef3

´
(∆kmn⊥)2 + ef2 (∆kmnz)

2
i

∆kmnzGmn

h
ε⊥ (∆kmn⊥)2 + εk (∆kmnz)

2
i ×

×AmA
∗
n exp i (∆kmnr−∆ωmnt) . (123)

The flexoelectric field Ef (123) is spatially localized due to the spatial local-
ization of the light wave amplitudes Am, A

∗
n [45]: z →∞, |Ef |→ 0. At the

interface z = 0 the field Ef behaves as a high frequency spatially periodic
surface wave. The tangential component of each harmonic (123) wave vector
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is continuous at the boundary [55], and for this reason the wave vector kLmn

in a linear medium z < 0 has a tangential component kLmn⊥ = ∆kmn⊥. The
normal component kLmnz is purely imaginary since

kLmn =
∆ωmn

c
∼ kms0

c
¿ ∆kmn⊥ ∼ km sin

µ
∆θ

2

¶
(124)

and ¡
kLmnz

¢2
=
¡
kLmn

¢2 − (∆kmn⊥)2 < 0 (125)

where ∆θ is the angle between the wave vectors of two light waves.
The second harmonic generation (SHG) [48] in NLC and SA is impossible

in general case due to their inversion symmetry [21]. However, it has been
observed in some special cases when the inversion symmetry is broken due to
the external electric or optical fields, boundary effects, light-induced spatial
dispersion, etc. [21]. Consider, for example, NLC placed in the external
electrostatic field E0 k n. Let the pumping wave E (ω) propagation direction
perpendicular to the director k ⊥ n. Then the nonlinear polarization with
the double frequency PN

o,e (2ω) for the ordinary and extraordinary pumping
waves Eo (ω) ,Ee (ω), respectively has the form [21]

PN
o (2ω) = χ(3)zxxzE0 (E

o (ω))2 n; PN
e (2ω) = χ(3)zzzzE0 (E

e (ω))2 n. (126)

The static flexoelectric polarization Pf (119) also gives rise the nonlinear
polarization PN (2ω) which has the form [21]

PN
i (2ω) ∼ χijklEi (ω)Ek (ω)Pfl = χeffikl Ei (ω)Ek (ω) (127)

where the effective nonlinear susceptibility χeffikl = χijklPfl can be intro-
duced.

A similar effect can occur in SA. However, this time it is related to the
light-induced smectic layer deformations and the high-frequency flexoelec-
tric polarization (120). The light-induced electric field Ef (123) breaks the
inversion symmetry of SA due to the molecule deformation and permits SHG
due to the mixing of the high frequency waves (123) and the fundamental
waves on the cubic susceptibility of an electronic origin χelijkl. The second
harmonic polarization in such a case has the form

PNL
i (2ωm) ∼ χelijkl (ω = ωm + ωn +∆ωmn)Efj (∆ωmn)Emk (ωm)Enj (ωn)

(128)
where the effective quadratic susceptibility

χeffikl ∼ χelijkl (ω = ωm + ωn +∆ωmn)Efj (∆ωmn) (129)
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Substituting expressions (81) and (123) into (128), we obtain the nonlinear
polarization which generates the second harmonic.

PNL
i (2ωm) ∼ − i

B
χelijkl (2ωm)

hmnΩ
2
mn

h³
ef1 + ef3

´
(∆kmn⊥)2 + ef2 (∆kmnz)

2
i

∆kmnzGmn

h
ε⊥ (∆kmn⊥)2 + εk (∆kmnz)

2
i ×

× |An|2A2m exp i (2kmr−2ωmt) . (130)

The surface anchoring may be neglected for sufficiently thick monodomain
layers of SA (d % 100µm). The specific surface effects such as the surface
SHG [21] are not considered in this work.

5.2 Light-induced hydrodynamic flow in SA

In SA any time dependent-normal deformation of the layer results in the
hydrodynamic flow according to equations (1) and (6). The normal compo-
nent vz of the hydrodynamic velocity is given by (6). Using expressions (85)
and (86), we obtain

vz =
X
m,n

∆ωmnh
e
mn (∆kmn⊥)2

4πρGmn (∆kmn)
2 AmA

∗
n exp i (∆kmnr−∆ωmnt) =

=
X
m,n

Vmn exp i (∆kmnr−∆ωmnt) . (131)

The hydrodynamic flow (131) is a complicated spatiotemporal pattern [61]
representing a superposition of 6 harmonics with different spatial periods
∼ (∆kmn)

−1 and temporal periods ∼ (∆ωmn)
−1. For a small difference in

frequencies and propagation directions of the fundamental light waves, km ∼
kn, ∆kmn ¿ km, and ∆kmn is approximately normal to the propagation
direction of the coupled light waves. Consequently, according to (1) the
hydrodynamic velocity v would be approximately parallel to the wave vector
km, i.e. almost coincides with the light wave propagation direction. As a
result, for the waves propagating in a direction close to the optical Z axis, the
hydrodynamic flow occurs perpendicular to the layer plane. In the opposite
case the light waves propagating close to the layer plane give rise to the
flow almost parallel to the layer plane. Each harmonic in the series (131)
can be characterized by two scales. The short scale is defined by the inverse
wave vector difference (∆kmn)

−1. The large scale is caused by the spatial
inhomogeneity of the slowly varying amplitudes Am and it is of an order of
magnitude of the correlation lengths (βmn)

−1. Substituting relations (88),
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(91) and (98) into (131), we obtain for the hydrodynamic velocity amplitudes
[45]

|Vmn|2 = βmnI0∆ωmnΩ
2
mn

4πBΓmn (∆kmnz)
2Mmn (132)

where the factors Mmn are given by

Mmn =WmWn =Wm (0)Wn (0) exp

− zZ
0

X
j

βmjWj +
X
i

βniWi

 dz0

 .
(133)

The envelope factor Mmn (133) determines the large-scale profile of the
hydrodynamic flow containing the combination of energetic, temporal and
spatial characteristics of the process. The comparison of relationships (90)
and (133) shows that all amplitudes Vmn are finite and spatially localized:
z →∞, |Vmn|→ 0. All hydrodynamic excitations are convective [68]. |Vmn|2
may have a maximum z0mn > 0 defined by a conditionX

j

βmjWj (z0mn) +
X
i

βniWi (z0mn) = 0 (134)

that exists if there exist the points z02,03 > 0 and the crossing point z1
determined by

z1Z
0

X
j

βj1Wj +
X
i

β4iWi

 dz0 = ln
·
W4 (0)

W1 (0)

¸
(135)

Hence, the envelopes of the velocity harmonics form spatial solitons [69]. In
the particular case of BEFWM (92)-(95) the envelopes have the form [45]

M14 =
J21

4 [cosh (η − η1)]
2 ÀMmn,m, n 6= 1, 4 (136)

M12,42 =
J1W2 (0)

2
exp (a1η)

·
cosh (η1)

cosh (η − η1)

¸c1
[1± tanh (η − η1)] (137)

M13,43 =
J1W3 (0)

2
exp (a2η)

·
cosh (η1)

cosh (η − η1)

¸c2
[1± tanh (η − η1)] (138)

M23 =W2 (0)W3 (0) exp [(a1 + a2) η]

·
cosh (η1)

cosh (η − η1)

¸c1+c2
. (139)
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The envelope (136) has a maximum at the crossing point η1. Other envelopes
have the following points of maxima

η012 = η1 +
1

2
ln

µ
β42 + β41

β21

¶
; η042 = η1 −

1

2
ln

µ
β41 + β21

β42

¶
; (140)

η013 = η1 +
1

2
ln

µ
β43 + β41

β31

¶
; η043 = η1 −

1

2
ln

µ
β41 + β31

β43

¶
; (141)

η023 = η1 +
1

2
ln

µ
β42 + β43
β21 + β31

¶
. (142)

The hydrodynamic flow is divided into large-scale strata with the different
temporal and short-scale spatial periodicity. In the case when the constants
βmn are strongly different, the maxima points (140)-(142) are well resolved
from one another, and the different strata would be distributed in an ap-
proximately symmetric way with respect to the largest maximum η1 of the
componentM14. In the opposite case when all βmn are approximately equal,
the small components with the rapidly oscillating different phases may be
neglected compared to the largest component M14, and the hydrodynamic
flow has the soliton profile of this component. Numerical estimations show
that all |Mmn| vanish for η ∼ (4÷ 5). The hydrodynamic velocity may reach
10cm/s. The minimal thickness necessary for the excitation of the hydro-
dynamic spatial soliton in a strong optical field is of an order of magnitude
of an excitation (correlation) length LE ∼ 0.02cm [45]. SA samples with a
thickness ∼ (200÷ 300)µm are feasible and have been used for the SLS and
SS observation [10, 11, 39].

All results obtained are valid for both homeotropically and planary ori-
ented SA. The necessary condition for the effects mentioned above is the
oblique incidence of the light waves with respect to the SA optical axis.

It should be noted that in SA with a finite electric conductivity the
light-induced hydrodynamic flow affects substantially the electro-convection
process. If dc electric field is applied, the electric current in SA consists
of the ion fluxes caused by migration, diffusion and convection [49]. The
light-induced high frequency hydrodynamic velocity (131) can be larger
than a constant migration velocity of ions with a very low mobility µion ∼
10−10m2/Vs in a dc field Edc ∼

¡
103 ÷ 104¢V/cm. As a result, ac cur-

rent would be predominant which enables the formation of high frequency
patterns [61].
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6 Conclusions

The characteristics of the specific for SA mechanism of optical nonlinearity
related to the layer normal displacement u (r,t) combine some advantages of
both orientational and electrostrictive mechanisms. They are characterized
by a large cubic nonlinearity compared to ordinary liquid Brillouin nonlin-
earity, a short time response, a weak temperature dependence, a resonant
form of a frequency dependence, and a strong dependence on the directions
of light wave polarization and propagation.

Considering the typical nonlinear optical effects in SA caused by a spe-
cific mechanism based on the layer displacement and SS, we obtained the
following results. The ordinary and extra-ordinary light waves undergo a
self-focusing and self-trapping due to the light-induced normal deformations
of the layers. Numerical estimations show that the nonlinear part of the SA
refraction index responsible for the self-focusing is about 10−10esu which is
one or two orders of magnitude larger than that for an orientational Kerr ef-
fect in isotropic organic liquids. A bright surface guided light wave can occur
at the interface between a linear medium and SA. An arbitrarily polarized
light wave propagating in a layer plane undergoes a spatial self-modulation
and polarization plane change.

The process of a nonlinear wave-mixing in SA is especially interesting.
In combines the dependence on both the large cubic nonlinearity and the
large SA optical anisotropy. SLS of two arbitrary polarized light waves
on SS transforms into a partially FWM due to the splitting of each wave
into ordinary and extra-ordinary waves. Four coupled light waves create
a dynamic grating of the layer normal displacement u (r,t) and undergo
the parametric energy exchange and cross phase modulation due to the
scattering on this grating. The strong resonant scattering and SS wave
excitation would occur when the frequency difference of the coupled light
waves satisfies the SS dispersion relation (11), (57). The two light waves
with the lower frequency are amplified, while the two light waves with the
larger frequency are depleted forming a macroscopic squeezed state. The
gain coefficient is one or two orders of magnitude larger than the one in
isotropic organic liquids. The spectrum of scattered waves consists of 20
Stokes, anti-Stokes and fundamental harmonics. The combination of SA
anisotropy and nonlinearity gives rise to the additional components of the
fundamental light waves. A sufficiently strong incident light wave excites the
secondary light wave and the SS wave similarly to the stimulated Brillouin
scattering with a threshold light intensity.

The nondegenerate FWM in SA due to the layer displacement nonlin-
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earity mechanism results in the amplification of the light wave with the
lowest frequency up to a saturation level. The light wave with the high-
est frequency is depleted monotonically. The two waves with intermediate
frequencies form the spatially localized structures. If the input pumping-
signal intensity ratio is high enough, a limited spatial interval exists where
three light waves with lower frequencies are amplified. In the special case
of the counter-propagated waves and frequency balance which is specific
for a phase-conjugation process a kind of BEWFM occurs accompanied by
the phase-conjugate wave amplification. The scattered harmonics spectrum
contains 24 Stokes and anti-Stokes terms. The numerical estimations are in
a good accord with the experimental results [38].

The light-induced dynamic grating of layer normal displacement gener-
ates a high frequency longitudinal electric field due to the flexoelectric effect.
This electric field breaks the SA inversion symmetry and permits SHG. The
light induced electric field does not penetrate into free space and behaves as
a surface wave outside the SA sample and as a propagated mode inside the
sample.

The light-induced dynamic grating of layer normal displacement results
in a hydrodynamic flow with an extremely complicated spatiotemporal pat-
tern having two different spatial scales. The short scale is determined by the
inverse wave vectors of the dynamic grating. The large scale is characterized
by the same excitation (correlation) lengths as the parametric interaction
process of the light waves. All hydrodynamic velocity harmonics are spa-
tially localized. The hydrodynamic flow can be either stratified, or it has a
soliton form. The light induced hydrodynamic velocity may reach 10cms−1

Appendix A

Derivation of the equation of motion for a layer displacement

We present here the detailed derivation of the equation of motion (10) using
the system of equations (1)-(9). We apply the operator curlcurl to both
sides of equation (2). Using the well known identity

[∇× [∇× v]] = ∇ (∇ · v)−∇2v (143)

taking into account condition (2) and the identity [∇× (∇Π)] ≡ 0 we obtain

−ρ∇2∂v
∂t
=∇ (∇ ·Λ)−∇2Λ+∇ (∇ ·Λvis)−∇2Λvis (144)
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where the viscous force (Λvis)i = ∂σ0ik/∂xi. We are interested only in the
hydrodynamic velocity component vz since it is related to the layer displace-
ment u (r, t) according to (6) and to the only non-zero generalized force den-
sity component Λz (3). Neglecting the small orientational term in the free
energy density (7) and substituting relations (7)-(9) into (3) we obtain

Λz = B
∂2u

∂z2
− 1

8π

∂

∂z

£
a⊥
¡
E2x +E2y

¢
+ akE2z

¤− 1

4π

·
∂

∂x
(ExEz) +

∂

∂y
(EyEz)

¸
(145)

The contribution of the viscous force Λvis.into the equation for vz is given
by

∂

∂z
(∇ ·Λvis)−∇2Λvisz =

·
−α1∇2⊥

∂2

∂z2
− 1
2
(α4 + α56)∇2∇2

¸
vz (146)

where expressions (1), (4) and (5) are taken into account. Separating the
z-component of equation (144) and substituting there equations (6), (145)
and (146) we immediately get the equation of motion (10).

Appendix B

Solution of the reduced equations for the partially degenerate
FWM

In this section we present the detailed solution of the reduced equations for
the slowly varying amplitudes (40) in the case of the partially degenerate
FWM discussed in Subsection 4.2. Consider the waves (38) and (39). Let
the incidence plane of the waves (38) coincides with the XZ plane. Then the
ordinary wave Eo

1 is polarized along the Y axis while the extra-ordinary wave
Ee
1 is polarized in theXZ plane and has two components. The corresponding
polarization vectors are eo1 = (0, 1, 0) and ee1 = (ee1x, 0, e

e
1z) where (e

e
1x)

2 +
(ee1z)

2 = 1. In general case, the incidence plane of the pair of waves Eo,e
2 (39)

cannot be reduced to the XZ plane. Hence we write for the polarization
vectors: eo2 =

¡
eo2x, e

o
2y, 0

¢
, ee2 =

¡
ee2x, e

e
2y, e

e
2z

¢
, |eo,e2 | = 1. The wave vectors

of the ordinary waves ko1,2 satisfy the dispersion relation (20), while the wave
vectors of the extra-ordinary waves ke1,2 satisfy the dispersion relation (21).
Substituting expressions (38) and (39) and keeping only the terms with the
frequency difference ∆ω = ω1 − ω2 ∼ s0ω1/c¿ ω1 we obtain the following
expression for the dynamic grating u (r, t)

u (r, t) =
i

4πρ

4X
j=1

Uj exp [(∆kjr)−∆ωt] + c.c. (147)
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where

Uj =
hjRj (∆kj⊥)2

(∆kj)
2Gj (∆ω,∆kj)

(148)

R1 = Ae
1 (A

o
2)
∗ , R2 = Ae

1 (A
e
2)
∗ , R3 = Ao

1 (A
o
2)
∗ , R4 = Ao

1 (A
e
2)
∗ (149)

and the quantities hj ,∆kj ,Gj (∆ω,∆kj) are defined by relations (49)-(55).
Inserting (147) into the expressions for the nonlinear polarization (15), sub-
stituting the terms phase matched to the fundamental waves (38) and (39)
into the right-hand side of reduced equations (18) for each wave and separat-
ing the real and imaginary parts, we obtain the following system of the first
order differential equations for the magnitudes

¯̄̄
Ao,e
1,2 (z)

¯̄̄
and phases γo,e1,2 of

slowly varying amplitudes (40).

2lo,e1
∂ |Ao,e

1 (z)|
∂z

= −ω
2
1

c2

h
p3,2 |Ao,e

2 (z)|2 + p4,1 |Ae,o
2 (z)|2

i
|Ao,e
1 (z)| (150)

2lo,e2
∂ |Ao,e

2 (z)|
∂z

=
ω22
c2

h
p3,2 |Ao,e

1 (z)|2 + p1,4 |Ae,o
1 (z)|2

i
|Ao,e
2 (z)| (151)

2lo,e1
∂γo,e1
∂z

= −ω
2
1

c2

h
q3,2 |Ao,e

2 (z)|2 + q4,1 |Ae,o
2 (z)|2

i
(152)

2lo,e2
∂γo,e2
∂z

= −ω
2
2

c2

h
q3,2 |Ao,e

1 (z)|2 + q1,4 |Ae,o
1 (z)|2

i
(153)

where

pj =
∆ωh2j (∆kj⊥)

2 Γj

4πρ (∆kj)
2 |Gj (∆ω,∆kj)|2

, qj =
h2j (∆kj⊥)

2
h
(∆ω)2 − Ω2j

i
4πρ (∆kj)

2 |Gj (∆ω,∆kj)|2

We multiply equations (150) by |Ao,e
1 (z)|ω−21 c2, and equations (151) by

|Ao,e
2 (z)|ω−22 c2 and add the resulting equations which gives the integral of

motion of the system (43). It defines the conservation of photon number
in the parametric energy exchange between the fundamental waves (38),
(39), or the Manley-Row condition [48, 55]. Introducing the dimensionless
variables W o,e

1,2 (42) we replace the integral of motion (43) with relation (41)
and rewrite equations (150)-(153) as follows.

−∂W
o,e
1

∂z
=
¡
β3,2W

o,e
2 + β4,1W

e,o
2

¢
W o,e
1 ,

∂W o,e
2

∂z
=
¡
β3,2W

o,e
1 + β1,4W

e,o
1

¢
W o,e
2

(154)
∂γo,e1
∂z

= −1
2
[δ3,2W

o,e
2 + δ4,1W

e,o
2 ] ,

∂γo,e2
∂z

= −1
2
[δ3,2W

o,e
1 + δ1,4W

e,o
1 ] (155)
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where the quantities βj , δj are determined by expressions (48). Equations
(154), (155) have the implicit solution (44)-(47). In general case, the ana-
lytical solution in a closed form of equations (154), (155) is hardly possible.
However, the asymptotic behavior of the solutions (44)-(47) can be studied
qualitatively. First of all, the conservation law (41) shows that all intensities
W o,e
1,2 are finite. For ω1 > ω2 the frequency difference ∆ω > 0, consequently

all βj > 0 and the integrands in the exponents of expressions (44), (45) are
positive definite. Hence W o,e

1 → 0 as z → ∞, while the integrals in the ex-
ponents of (45) have a finite value, and W o

2 +W e
2 → 1 as z →∞. Equations

(155) describe the cross modulation effect.
Under conditions (58) the expansions (59), (60) are used, and equations

(154) can be reduced to the chain of the following coupled equations.

∂W e
10

∂z
= −β1W e

10W
o
20,

∂W o
20

∂z
= β1W

e
10W

o
20 (156)

∂W o
1

∂z
= −β3W o

20W
o
1 ,

∂W e
2

∂z
= β2W

e
10W

e
2 (157)

−∂W
e
11

∂z
= β1 (W

o
20W

e
11 +W e

10W
o
21) + β2W

e
2W

e
10 (158)

∂W o
21

∂z
= β1 (W

o
20W

e
11 +W e

10W
o
21) + β3W

o
20W

o
1 (159)

Equations (156), (157) yield analytical solutions in a closed form (61), (62)
and the rapidly converging solutions in the integral form (63), (64). The
corresponding phases are evaluated by substituting the first approximation
solutions (61) into (46), (47) which yields expressions (72), (73).

The similar approach is used for the solution of the reduced equation
in the case of the non-degenerate FWM (Subsection 4.3). The detailed
derivations can be found in Ref. [45].
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