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Abstract

We investigate coherent and incoherent tunneling phenomena in
crossing diabatic potentials (Landau - Zener (LZ) level crossing prob-
lem). We consider a model of two crossing parabolic diabatic poten-
tials (left (L) and right (R)) with a constant adiabatic (i.e. indepen-
dent of coordinates and difference of the diabatic potential minima
δELR) coupling U12. As a result of coupling and level repulsing, we
get the asymmetric double-well lower adiabatic potential with a vari-
able shape depending on a continuous parameter b (which describes for
b = 1 two identical parabolic diabatic potential crossings and in the
limit b→∞ one-well and linear diabatic potentials crossing). We show
that the doublet structure of levels (generic for double-well potentials)
is remained valid as long as the transition matrix element HLR (tun-
nel splitting) is smaller than the characteristic inter-level spacings ∆R

(which, in turn, decreases upon δELR increasing). We calculate the
non-adiabatic factor, HLR as a function of U12. In the diabatic limit
(U12 → 0) HLR goes to zero while in the adiabatic limit (U12 → ∞)
the tunneling transitions do not depend on the upper potential. In
the over-barrier energy region, HLR is an oscillating function of U12
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due to resonances between the states in the lower and upper adiabatic
potentials. In the case HLR < ∆R, any level from the shallow L-well is
coupled by tunneling to several levels in the R-well, and the transitions
lose their coherence. The problem is not only of intellectual interest but
also of relevance to various molecular systems undergoing conversion
of electronic states or isomerization reactions. Our model exhausts all
cases practically relevant for spectroscopy of non-rigid molecules, and
can explain many of the experimentally observed features.

PACS: 05.45.-a, 72.10.-d

1 Introduction

Double-well potentials appear in various contexts in physics and chemistry.
For example, the simplest pattern of almost any molecular reactive system
(with two stable configurations identified as a reactant and as a product)
corresponds to the model potential energy formed by two multi-dimensional
nearly parabolic terms shifted relative to each other. Although the 1D asym-
metric double-well model is idealised, it can be very useful for a qualitative
discussion to gain more insight into complex multi-dimensional dynamic
molecular properties for which exact or even approximate theoretical results
are not available, and in the whole description to follow we will consider 1D
case only.

In the classical limit for the energy region E < Ub (where Ub is the
potential barrier, separating the left (L) and the right (R) wells), which
will be referred further on as the tunneling region, the both wells are fully
decoupled and therefore independent. As it is a common wisdom nowadays
that in quantum mechanics even for E < Ub the particle can tunnel between
the wells. It admixes the L and R well localized states, thus allowing an
under-barrier tunneling mechanism. The extent of this delocalization is
larger in the states close to the top of the barrier, and it is maximal when the
unperturbed levels on the opposite sides of the barrier are degenerate (the
reason is immediately clear by looking at the standard textbook expressions
for the tunneling probability and level splitting [1]). For the symmetric case
this tunneling level splitting leads to coherent quantum oscillations typical
for any two-level system. For asymmetric double-well potentials, pairs are
not in coincidence any more, tunneling is suppressed, except for certain
critical values of model parameters for which the levels are brought back in
resonance, and the problem becomes more tricky. We have recently shown
[2] that one can successfully attack this problem by a semiclassical solution
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of the Schrödinger equation for 1D asymmetric double-well potential with a
one-parameter shape

U1(X) =
1

2
X2(1−X)

µ
1 +

1

b2
X

¶
. (1)

U1 is written in the dimensionless form with energy measured in the units
of characteristic oscillation frequency around the left (L) minimum Ω0, and
coordinate X measured in the units of the inter-well distance a0 (using
also the ”God given unit” ~ = 1, except for separate explicitly indicated
cases when the opposite is necessary for understanding or estimations). The
dimensionless parameter b allows us to change the shape of the R well and
to consider both limiting cases, namely, a traditional symmetric double-well
potential (b = 1) and a decay potential for b → ∞. The latter limiting
case is also well known, and is characterized by a continuum spectrum of
eigenstates for X →∞ and incoherent decay of quasi-stationary states from
the L-well.

Of course, the model potential (1) is only one particular example of the
1D asymmetric potentials with one-parameter shapes. A generalization of
our results to other asymmetric potentials will be commented upon through-
out the text. On equal base we could take, e.g.,

U2(X) =
1

2
(1−X2)2 +

3β

2
X

µ
1− 1

3
X2

¶
, (2)

where β sets a scale of the double-well asymmetry. Although the both po-
tentials (1) and (2) have different shapes, they share many common features.
For a small asymmetry β ¿ 1 or b ' 1 (let us remind that the energy scale
is a characteristic one-well oscillation frequency) there is a trivial modifica-
tion (with respect to the symmetrical double-well potential) of the tunneling
splitting. For example, a straitforward calculation gives for the ground state
doublet E±0 in the potential (2)

E±0 = ±(β2 +∆20)1/2 , (3)

where ∆0 is the ground state splitting for the symmetrical double-well po-
tential (i.e. for β = 0 or b = 1).

It was shown in [2] that for any asymmetric double-well potential the
behavior depends crucially on a dimensionless parameter Λ that is, roughly
speaking, a ratio of characteristic frequencies for low-energy in-well oscilla-
tions and inter-well tunneling. For Λ¿ 1, there are well defined resonance
pairs of levels, and the so-called survival probability (i.e. the probability for
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a particle initially localized in one well to remain there) has coherent oscil-
lations related to the resonance splitting. However, for Λ→∞ for any finite
time scale, there are no oscillations for the survival probability, but almost
exponential decay with the characteristic relaxation time ∝ H−2

LR determined
by Fermi golden rule. In NMR terms this relaxation time can be associated
with the so-called dephasing time T2. Thus one can say that tunneling de-
stroys coherent behavior and can be associated with dephasing processes in
the phenomenological Bloch theory of quantum relaxation. Explicitly, for
asymmetric double-well potentials

T−12 =
H2
LR

2π∆R
(4)

where ∆R is a typical level spacing for the final states. In the case ΛÀ 1 one
may not restrict himself to the only resonance pair levels. The number of
levels perturbed by tunneling grows proportionally to

√
Λ or, in other words,

instead of isolated pairs there appear the resonance regions containing sets
of strongly coupled levels. At the intermediate values of Λ ≥ 1 one has
a crossover between both limiting cases, namely, exponential decay with
subsequent long period recurrent behavior (longer the larger is Λ).

It is particularly instructive to look at this result from a slightly different
point of view related to the striking and still enigmatic phenomenon of
quantum chaos. Perhaps the first successful quantitative criteria relating
the classical ergodic theory to quantum molecular dynamics were formulated
long ago by von Neumann and Wigner [3]. According to [3], a system has
the ergodic behavior if it has:

(i) equidistant spectral distribution (i.e. no degenerate states);
(ii) time decay of correlations for any observable.
We will see that the both criteria are satisfied for strongly asymmetric

double-well potentials where highly excited states in the R well are strongly
perturbed by tunneling from the shallow L well. This phenomenon will be
referred to what follows as tunneling induced ergodicity of final states and
in our notation it corresponds to

|HLR| > ∆R . (5)

An isolated double-well potential is, of course, only an idealization of any
real molecular system. The applicability of such an idealization must be ana-
lyzed separately for each system or process in question. However, even in the
cases where such a model is not justifiable the calculations we performed are
nonetheless instructive. Moreover, in this paper we make one step further.
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In a typical problem of chemical dynamics or molecular spectroscopy, the
double-well potentials can appear as a result of level crossing phenomena,
and consideration of a single isolated double-well potential (lower adiabatic
potential) can be justified only if the gap occurring in the spectrum at the
avoided level crossing point is much larger than all other characteristic en-
ergy scales of the problem. However, it is not evidently the case if we are,
for example, interested in the calculation of vibrational - tunneling spectra
of non-rigid molecules, or reactive complexes with more than one stable con-
figuration. The lowest multi-well potential of such systems is formed from
one-well diabatic potential crossings corresponding to each stable configura-
tion. Apart from the lowest potential, the upper adiabatic potential with its
minimum above the maximum of the lowest potential should be also taken
into account in these situations. Most of the calculations of tunneling split-
tings in the ground and low excited vibrational states neglect the coupling
to the upper potential, what is certainly correct only for a strong enough
adiabatic coupling. The same situation takes place for systems undergoing
the Jahn - Teller effect, where the interference of the diabatic states oc-
curs [4]. In all these situations the adiabatic coupling removes diabatic level
crossing, and the diabatic levels are replaced by the adiabatic ones. Let us
repeat that only in the case of a large adiabatic splitting one can restrict
oneself to the only lower adiabatic potential and neglect any influence of the
upper adiabatic potential. However, in a general case of arbitrary adiabatic
splittings, intra-well and inter-wells dynamics depends on the both adiabatic
potentials (i.e. on tunneling splittings and adiabatic interactions).

In the fundamental problems of chemical dynamics and molecular spec-
troscopy, the transitions from the initial to final states can be treated as a
certain motion along the potential energy surfaces of the system under con-
sideration. These surfaces, in turn, are usually determined within the Born
- Oppenheimer approximation. However, the approximation becomes inade-
quate for the excited vibrational states, when their energies are of the order
of electronic inter-level energy spacing or near the dissociation limit. In both
cases the non-adiabatic transitions should be taken into account, and the
most of the non-radiative processes occur owing to this non-adiabaticity.
The typical examples investigated in the monography [5], include the so-
called pre-dissociation, singlet-triplet or singlet-singlet conversion, and vi-
brational relaxation phenomena.

To treat this kind of Landau-Zener (LZ) level crossing problems, a usual
textbook consideration utilises the outset within a limited electronic sub-
space, which is completely spanned by a finite set of Born - Oppenheimer
or adiabatic electronic states. However, since these states obey the non-
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crossing rule, it may be desirable technically to transform the states into
the diabatic representation in which the diagonal matrix elements of the
electronic Hamiltonian in the subspace can cross, and the off-diagonal inter-
actions appear as scalar coupling potentials.

The major concern of this paper is the construction and solution of a
model for two asymmetric diabatic level crossing phenomena. We begin with
Section 2 containing a formulation of our model and a discussion of basic
methodical details necessary for our study. Section 3 contains our main
results. We derive the criteria for reversibility and coherent or incoherent
tunneling for crossing diabatic potentials. The conclusive Section 4 deals
with miscellaneous subjects related to the diabatic level crossing phenomena.

2 Model potential and basic relations

As a model for diabatic potentials in this paper we choose two non-equivalent
parabolas:

UL =
1

2
(1 +X)2 ; UR =

1

2b
(X − b)2 (6)

with a symmetric crossing at X = 0. Upon increasing the well asymmetry

δELR = −b− 1
2

(7)

the potential UR is converted from a simple parabola at b = 1 to a linear
potential at b→∞. Owing to the adiabatic coupling U12 (which we assume
for simplicity independent of coordinates) we get the lower double-well and
the upper one-well adiabatic potentials.

To find eigenstates and eigenfunctions for our model potential at arbi-
trary values of the parameters U12 and b, we should solve the system of
coupled Schrödinger equations

−1
2

d2ΘL

dX2
+ γ2(UL(X)−E)ΘL = γ2U12ΘR ; (8)

−1
2

d2ΘR

dX2
+ γ2(UR(X)−E)ΘR = γ2U12ΘL , (9)

which can be written as a single fourth-order equation

d4ΘL

dX4
− 2γ2(UL(X) + UR(X)− 2E)d

2ΘL

dX2
− 4γ2dUL

dX

dΘL

dX
+ (10)

4γ4
·
(UL −E)(UR −E)− U212 −

1

2γ2
d2UL

dX2

¸
ΘL = 0 .
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Here γ À 1 is the semiclassical parameter determined by the ratio of the
characteristic potential scale over the zero oscillation energy (i.e., as above,
γ ≡ mΩ0a

2
0/~ where m is the mass of a particle, a0 is a characteristic length

of the problem, e.g., the tunneling distance, Ω0 is a characteristic frequency,
e.g., the oscillation frequency around the potential minimum).

Luckily, the equation (10) admits semiclassical solutions by the Fedo-
ryuk method [6 - 8] since the coefficients at the n-th order derivatives are
proportional to γ−n, and therefore are small. Besides, in the vicinity of the
crossing point X = 0 the diabatic potentials (6) can be replaced by linear
ones counted from the barrier top U#

UL/R(X) = U# ± 1
2
fX , (11)

and eventually the equation (10) can be presented into a more compact and
simple form

d4ΘL

dX4
− 2γ2αd

2ΘL

dX2
− 2γf dΘL

dX
+ γ4[α2 −X2 − u212]ΘL = 0 , (12)

where α = (1/2)−E, and u12 ≡ 2U12/γ.
Four roots of the characteristic polynomial of (12)

F (λ,X) = λ4 − 2γ2(UL + UR − 2E)λ2 − 4γ2dUL

dX
λ+ (13)

4γ4
·
(UL −E)(UR −E)− U212 −

1

γ2
d2UL

dX2

¸
determine the four fundamental solutions to (12)

yj = (f
2X2 + u212)

−1/4 exp(
Z

λj(X)dX) , j = 1, 2, 3, 4 . (14)

The solutions (14) can be visualized as a motion with imaginary momenta
in the upper and lower adiabatic potentials

U± =
1

2
(UL + UR)± 1

2
[(UL − UR)

2 + 4U212]
1/2 . (15)

As it was mentioned above, in the vicinity of the crossing point one can
replace (10) by (12). In the latter equation the coefficient at the first order
derivative is small (∝ γ−1), and by the substitution

ΘL = exp(κ1,2X)Φ
1,2
L , (16)
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where

κ1,2 = ±γ
√
α

µ
1± δ

2

¶
, (17)

and δ is a first order correction (see [11]), we obtain δ = (f/4γ)α−3/2.
Therefore the equation (12) is reduced to two independent Weber equations
with the known fundamental solutions [9]

{ΘL} = { exp(±γ√αX)D−ν
µ³

f2γ2

α

´1/4
X

¶
,

exp(±γ√αX)D−1−ν
µ³

f2γ2

α

´1/4
X

¶
}

(18)

and ν = (γu212)/(4f
√
α) is the so-called Massey parameter. The corrections

to the indices of the parabolic cylinder functions D and to the arguments of
these functions can be found from (17) and have been calculated in [11].

At the next step we should perform the asymptotically smooth match-
ing of the solutions (14) and (18). The whole analysis can be brought into
a more elegant form by introducing connection matrices which link on the
complex plane the semiclassical solutions of the Schrödinger equation with
the exact potential of our problem (e.g. (6) in our case) and the exact solu-
tions of the so-called comparison equation (in our case (12)) which is valid
near the crossing point. Explicit calculations of the connection matrices are
rather involved since the LZ problem is characterized by four fundamental
solutions to the left and to the right regions with respect to turning or cross-
ing points. Therefore the connection matrices we are looking for, are 4× 4
matrices. Although the generalization for our case of the already known 2×2
connection matrices (see, e.g., [10] and our publication [11] for more recent
references) is straightforward, it deserves some precaution as it implies quite
different procedures for the energy, more accurately for E/γ smaller then
(the tunneling region), larger then (the over-barrier region), or of the order
(the intermediate region) of the potential barrier, i.e. U# − U12.

Indeed, in the case

E

γ
¿ U# − U12 − 1

2
Ω# , (19)

(Ω# is the characteristic frequency of ”oscillations” in the barrier of the
lower adiabatic potential) the region near the crossing point is forbidden
for both adiabatic potentials. However, four real-valued turning points of
the lower adiabatic potential are far enough from the crossing point. The
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upper adiabatic potential in this case is also higher than E/γ, and therefore
for the instanton approach there are two imaginary turning points, which
characterize the motion in the inverted upper adiabatic potential. Thus
for the tunneling region we have four real-valued and two pure imaginary
turning points.

In the over-barrier energy region, when the energy is larger than the
upper adiabatic potential minimum, i.e.

E

γ
À U# + U12 +

1

2
Ω0 , (20)

(remind that Ω0 is the characteristic frequency of one-well oscillations) the
whole region for both potentials is accessible for the classical motion. Thus
there are four real-valued turning points (two for the lower and two for the
upper adiabatic potentials). Besides, there are two imaginary turning points
corresponding to the quantum over-barrier reflection for the lower adiabatic
potential. Finally in the intermediate energy region, i.e. for

U# + U12 +
1

2
(Ω# +Ω0) ≥ E

γ
≥ U# − U12 − 1

2
(Ω# +Ω0) , (21)

there are two real-valued and four imaginary turning points.
The tunneling path is the key point to be considered within the instanton

method, and the determination of the tunneling trajectory (or trajectories)
is, in a general case, a nontrivial task. However, for our model 1D potentials
(1), (2) in the symmetrical case the extremal action trajectory consists of
the so-called kink and anti-kink parts corresponding to the L → R and
R → L transitions, and the action for every part (i.e. kink or anti-kink) is
W ∗. More or less qualitatively, it is also is the tunneling path for a small
potential asymmetry. However, when the asymmetry is larger than the
tunneling splitting in the symmetric double-well potential, there is only one
classical trajectory starting from the less deep well (say, R) and returning
to R not reaching the deeper L minimum. Thus in this case the pair kink -
anti-kink forms a single (so-called bounced) trajectory with the action 2W ∗.
We will explore this issue below in more detail.

The double-well shape of the lower adiabatic potential and the influence
of the upper adiabatic potential require taking into account at least two
instanton trajectories with the energies E = 0 and E = γE# during the
solution. According to this strategy, one has to match smoothly the semi-
classical (e.g., instanton) solutions far from the crossing point (X = 0) with
the solutions of the more simple comparison equation valid in the vicinity of
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the crossing point. This matching should be performed asymptotically, i.e.
at small |X| but large enough √γ|X|.

Now we are in the position to find all needed connection matrices. In
the tunneling region (19) for every well (L or R) there exist both increasing
and exponentially decaying, real-valued solutions of the Schrödinger equa-
tion. The solutions are matched at the crossing point, being linked by the
real-valued 4 × 4 connection matrix, which should have two 2 × 2 blocks
linking the increasing (decreasing) diabatic solution in the L-well with the
decreasing (increasing) diabatic solution in the R-well, in the agreement with
the standard Landau scheme of tunneling transitions [1]. Omitting a large
amount of tedious algebra we can represent the connection matrix linking
the ”asymptotic” (i.e. in the left/right (L, R) wells and for the upper/lower
(+, −) adiabatic potentials) solutions in the tunneling energy region in the
form
Φ−R
Φ+R
Φ+L
Φ−L

 =

Ã
M̂
(+)
c L̂

(c)
R M̂ (−)F̂c 0

0 1̂

!
Ûc

Ã
F̂cM̂

(+)
c L̂

(c)
L M̂

(−)
c 0

0 1̂

!
Φ+L
Φ−L
Φ−R
Φ+R

 .

(22)

Here Ûc is the 4 × 4 connection matrix at the crossing point, which in the
tunneling region has the form

Ûc =


p 0 0 − cos(πν)
0 (sin2(πν))/p − cos(πν) 0
0 cos(πν) p 0

cos(πν) 0 0 (sin2(πν))/p

 , (23)

where we designated

p =

√
2π exp(−2χ)
Γ(ν)

, (24)

and χ = (ν/2) − (1/2) (ν − (1/2)) ln ν. The matrices M̂ (+)
c and M̂

(−)
c are

the 2 × 2 connection matrices at the corresponding turning points, which
are determined by the phase shifts at these points:

M̂ (−)
c =

µ
1 −i

−(i/2) (1/2)

¶
, (25)
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and M̂
(+)
c is the matrix Hermitian conjugated to (25). The L̂(c)L/R and F̂c

matrices, called shift matrices, are related to the variations of the coefficients
of increasing and decaying semiclassical solutions in the regions between the
turning points (F̂c is the shift matrix when one moves from the crossing
to the turning point in classically forbidden region, and L̂

(c)
L/R

are the shift
matrices in the classically accessible regions). Explicitely we get

F̂c =

µ
exp(−γW ∗

B/2) 0
0 exp(γW ∗

B/2)

¶
. (26)

Here γ is the semiclassical parameter and W ∗
B is the action in the lower

adiabatic potential barrier. Finally, the structure of the shift matrices L̂(c)L/R
is

L̂
(c)
L/R =

Ã
exp(iγW ∗

L/R) 0

0 exp(−iγW ∗
L/R)

!
, (27)

where W ∗
L/R is the action calculated by integration between the turning

points.
The over-barrier region (20) can be treated in the same manner. In this

case the crossing point is in the classically accessible region for both poten-
tials. The fundamental diabatic solutions can be represented as the waves
propagating in the opposite directions, and the complex-valued connection
matrix has, similarly to the tunneling region, a 2× 2 block structure where
the blocks link the waves in the L and R wells propagating in the same
direction. Specifically, the corresponding connection matrix at the crossing
point Û 0c

Û 0c =


s exp(−iφ) 0 0 − exp(−πν)

0 s exp(iφ) − exp(−πν) 0
0 exp(−πν) s exp(−iφ) 0

exp(−πν) 0 0 s exp(iφ)

 (28)

where we denoted s =
p
1− exp(−2πν), φ = argΓ(−iν) + =(2χ̃), and

χ̃ = −(i/2)((π/4) + ν(1− ln ν)) + (1/4)(πν + ln ν)) should be multiplied by
two blocks: the left block gives the contribution at the turning point and
includes the shift matrix to the crossing point in L and R wells of the lower
adiabatic potential; the right block is related to the turning point and to the
shift matrix to the crossing point in the upper one-well adiabatic potential.
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Thus in the over-barrier region we finally get
Φ−R
Φ+R
Φ+L
Φ−L

 =

Ã
M̂
(+)
c L̂

(c)
R 0

0 M̂ (+)L̂

!
Û 0cross

Ã
L̂
(c)
L M̂

(−)
c 0

0 L̂M̂ (−)

!
Φ+L
Φ−L
Φ−R
Φ+R

 .

(29)

Here we used the same notations as above for the tunneling region. The
matrices M̂ (±) are also transposed with respect to the matrices M̂ (±)

c given
by (25), and the new shift matrix L̂ isµ

exp(−iγW ∗/2) 0
0 exp(iγW ∗/2)

¶
, (30)

(remind that W ∗ is the action in the upper adiabatic potential). Combining
altogether (29), (28), (30), and (25), one can trivially find the full connection
matrix for the over-barrier energy region (20).

More tricky task is to calculate the connection matrix in the interme-
diate energy region (21). In this region the crossing point is close to the
internal linear turning points of the diabatic potentials. Therefore the two
fundamental diabatic solutions are in the classically accessible region and
two others are in the forbidden region. Nevertheless, even in this case the
connection matrix has the 2 × 2 block structure but these blocks deter-
mine the transitions between the adiabatic states (unlike the tunneling or
the over-barrier regions where the connection matrices (22), (29) link the
diabatic states).

Following the same line as above, we first present the general structure
of the connection matrix in the intermediate energy region:

Φ−R
Φ+R
Φ+L
Φ−L

 =

Ã
M̂
(+)
c L̂

(c)
R 0

0 1

!
Û 00cross

Ã
L̂
(c)
L M̂

(−)
c 0

1 0

!
Φ+L
Φ−L
Φ−R
Φ+R

 . (31)

All matrices in (31) have been already defined, and at the crossing point,
the matrix Û 00c is

Û 00c =


s̃ exp(−iφ) i exp(−πq2) 0 0
−i exp(−πq2) s̃ exp(iφ) 0 0

0 0 p̃ sin(πq1)
0 0 − sin(πq1) cos2(πq1)/p̃

 ,(32)
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where s̃ =
p
1 + exp(−2πq2), φ = argΓ((1/2)− iq2)+=(2χ2), and p̃ =

√
2π

exp(−2χ1)/Γ((1/2) + q1). We have introduced the following notations

q1 = γ
u12 + α

2
; q2 = γ

u12 − α

2
, (33)

χ1 =
1

2

µ
q1 +

1

2

¶
− q1
2
ln

µ
q1 +

1

2

¶
, (34)

and similarly

χ2 =
1

2

µ
iq2 − 1

2

¶
− iq2
2

·
ln

µ
q2 +

i

2

¶
− i

π

2

¸
. (35)

Now the full connection matrix in the intermediate energy region can be
easily found by simply collecting the given above expressions (31), (32), and
(25).

3 Results and discussion

The purpose of this section is to study how the coherent - incoherent tun-
neling relationships found in [2] and shortly described in Section 1 for an
isolated double-well potential, particularly, the criterion (5) and the dephas-
ing time T2 (4), should be modified for more realistic situations with a finite
adiabatic coupling between the diabatic potentials forming the asymmet-
ric double-well lower adiabatic potential, and the one-well upper adiabatic
potential.

However, to investigate this problem, we should first derive the quantiza-
tion rules for crossing diabatic potentials. In spite of the fact that instanton
trajectories are rather simple objects and can be relatively easy found analyt-
ically, calculations of the quantization rules within the instanton approach
are rather intricate and require the knowledge of all connection matrices,
calculated in the previous section. To apply this machinery within the in-
stanton approach, the quantization rule can be formulated as a condition of
vanishing the amplitudes of exponentially increasing solutions. In terms of
the connection matrix elements mij this condition is

m22m33 −m23m32 = 0 . (36)

If the above-made assumptions are fulfilled, one can easily write down
the Bohr - Sommerfeld [1] quantization equations for the tunneling region

tan(γW ∗
L) tan(γW

∗
R) =

4

p2
exp(2γW ∗

b ) (37)

398



where W ∗
b is the action in the classically forbidden region between the turn-

ing points andW ∗
L/R are the coordinate-independent actions inside L (or R)

well. This equation (37) can be solved to find energy levels in the wells.
Applying the same procedure to the over-barrier region (20), we find

from (33)

(1− exp(−2πν)) cos(γ(W ∗
L +W ∗

R)− φ) cos(γW ∗ + φ) + (38)

exp(−2πν) cos
µ
γ

µ
W ∗

L +
W ∗

2

¶¶
cos

µ
γ

µ
W ∗

R +
W ∗

2

¶¶
= 0 .

In the diabatic limit (ν → 0) one get from (38)

cos

µ
γ

µ
W ∗

L +
W ∗

2

¶¶
cos

µ
γ

µ
W ∗

R +
W ∗

2

¶¶
= 0 , (39)

and, therefore, two independent quantization conditionsµ
γ

µ
W ∗

L +
W ∗

2

¶¶
= π

µ
nL +

1

2

¶
;

µ
γ

µ
W ∗

R +
W ∗

2

¶¶
= π

µ
nR +

1

2

¶
.(40)

On the other, hand in the adiabatic limit, i.e. at ν → ∞ and φ → 0, we
have

cos(γ(W ∗
L +W ∗

R)) cos(γW
∗) = 0 , (41)

and therefore

γ(W ∗
L +W ∗

R) = π

µ
n+

1

2

¶
; (γW ∗) = π

µ
n0 +

1

2

¶
. (42)

To conclude this part and span a wide range of possibilities, the quantization
condition in the intermediate energy region derived from the connection
matrix can be represented in the following form:

cos(γ(W ∗
L +W ∗

R)− φ) =
exp(−πq2)p
1 + exp(−πq2)

cos(γ(W ∗
L −W ∗

R)) . (43)

Now it seems appropriate to take a fresh look at the results presented above.
What can we learn from the performed calculations? First, we can go one
step further to analyze the phase factors calculated above. In our system
(two crossing diabatic potentials) there are two types of phases. The first
phase factor occurs since the tunneling results in the phase shift related to
the change of eigenvalues. It leads to a certain kind of one-well phase (T2)
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relaxation. The physical argument leading to T2 relaxation at the tunneling
in the asymmetrical double-well potentials may be rationalized as follows.
The fact is that waves reflected from the barrier acquire a non-trivial phase
factor. The phenomenom is related to the interference of incident, reflected
and transmitted waves. One can look to this phase factor from a slightly
different point of view since tunneling results in the phase shift related to
the change of eigenvalues. The quantization rules can be rewritten in the
form including some integers numerating an exponentially small phase shift
due to the existence of a barrier between two wells.

The second phase shift in our case is related to non-adiabatic processes.
The LZ case (even for the same asymmetric double-well shape of the lower
adiabatic potential) is, indeed, quite different not only quantitatively due to
coupling with the upper adiabatic potential but also qualitatively, due to a
novel and fundamental quantum effect. Namely, in addition to the described
above tunneling phase (existing even in an isolated double-well potential),
a quantum mechanical wave function acquires upon a cyclic evolution some
geometrical, or Berry phase, factor [12 - 16]. The most characteristic for
the concept of Berry phase is the existence of a continuous parametric space
in which the state of the system can travel along a closed path. In our
case the phase is determined by the non-adiabatic interaction. Coherent or
incoherent kind of crossing diabatic potentials crucially depends on a quite
tricky interplay between the both (i.e. tunneling and Berry) phase factors.
Two new results which have emanated from our study of these phenomena,
were our stimuli for presenting this paper.

Let us consider a general example describing two non-symmetric poten-
tials crossing at X = 0 (6). When the parameter b determining the potential
(6) is varied from 1 to ∞, we recover the two known in the literature limit-
ing cases and come from two identical parabolic potentials to a crossing of
one-well and linear diabatic potentials. This kind of crossing leads to the
lower adiabatic potential in the form investigated in [2] and has qualitatively
the same features as the model potentials (1) and (2). If one neglects for a
moment the upper adiabatic potential, aiming to study the crossover from
coherent to incoherent tunneling upon increase of the parameter b, then
the density of final states will increase with the parameter b. The criterion
for coherent-incoherent crossover found in [2] is based on comparison of the
transition matrix elements and the inter-level spacings in the final state. A
similar criterion should hold for LZ level crossing problem, but in the latter
case the tunneling transition matrix elements has to be multiplied by a small
adiabatic factor. Therefore the coherent - incoherent tunneling crossover re-
gion moves to the higher density of final states, and the larger is U12 the
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smaller will be the region for incoherent tunneling.
Quite different situation occurs for the excited states. In the diabatic

limit, the transition matrix element increases with the Massey parameter ν
and therefore at a given b, the system moves to more incoherent behavior. In
the adiabatic limit, the transition matrix element is exponentially small and
coherence of the inter-well transitions should be restored. However, since
the matrix elements are oscillating functions of U12 for the intermediate
range of this coupling (U12), coherent - incoherent tunneling rates are also
non-monotonically varying functions.

Owing to non-adiabatic behavior of the system, the tunneling matrix
elementHLR is renormalized by the adiabatic factor. In the tunneling region
(37) we find this renormalization as

HLR → HLRp(ν) (44)

where the function p(ν) (24) is associated with the transition amplitudes
between diabatic potentials in the crossing region.

This renormalization tunneling factor varies from 0 to 1 upon increasing
of the Massey parameter ν. As we have already found for the isolated
double-well potential, in the limit

HLRp(ν)¿ ∆R , (45)

the spectrum consists of a set of tunneling doublets and L − R transitions
are coherent ones. The criterion (45) replaces (5) for our case of the finite
adiabatic coupling U12.

The expressions for the connection matrices enable us to find the renor-
malization factor in the over-barrier and intermediate energy regions as well.
To do it, one has to compute the integralZ ∞

−∞
dX

¯̄̄̄
Ψ
dΨ

dX

¯̄̄̄
.

We do not present here calculations of this renormalization factor. It might
be an interesting task to compare them with detailed experimental data
on spectroscopy of non-rigid molecules but in the absence of these data we
mention only that the renormalization factor turns out to be an oscilla-
tion function of the well asymmetry and therefore the phase space contains
several regions of coherent and incoherent tunneling. To illustrate these un-
usual phenomena, we show in Fig. 1 time dependence of the average survival
probability P for the initially prepared state n = 0 localized in the left well.
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Figure 1: Survival probability for the localized n = 0 state; (a) b = 1500 ,
dashed lines U12 = 0.15 ; solid lines U12 = 0.21; (b) b = 1500, dashed lines
U12 = 0.28 ; solid lines U12 = 0.21.

4 Conclusion

In conclusion, let us first comment on our motivation. In principle, poten-
tials with two stable equilibrium configurations are widely used in chemistry
and physics, for description of molecular spectroscopy data. Analyzing these
data, one must distinguish between two types of states, which require a set
of different theoretical and experimental methods, each one with specific
strengths and weaknesses on certain length and time scales. Low-energy
states localized near the minima of such potentials, are experimentally stud-
ied by vibrational spectroscopy methods. These low-energy states can be
characterized by well-defined quantum numbers describing the normal vibra-
tion excitations. Quite different approaches should be used to study highly
excited states near the top of potential barrier. Just these states determine
the probability of thermo activated molecular transitions. These phenomena
are essentially, so that theoretical descriptions of these states usually assume
their ergodicity. This ergodic behavior can be easily understood since the
excited states near the barrier top have so high density that even very small
coupling to environment (thermal reservoirs) can provide fast mixing and
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thermalization of the states.
However, applying these approaches (and the model potentials) to real

chemical dynamic problems of low-temperature reactions and transitions
of relatively small molecules or atomic clusters (attracting much attention
in relation with chemical reactions in upper Earth atmosphere layers and
high precision laser spectroscopy techniques), one should take care whether
these two relevant regions of energy are not overlapped. Measurements
of molecules with two stable configurations performed in the temperature
interval (10− 20 K) low enough to ensure irrelevance of dephasing or relax-
ation processing for the measurement time [21 - 23], demonstrated tunnel-
ing doublets dependence on well-defined vibrational excitations. Thus such
a low-temperature behavior can be attributed to coherent tunneling, and
the advent of ultrafast lasers has provided physical chemists with a tool for
studying these systems under nonequlibrium conditions.

On the other hand, there are also numerous examples (see, e.g., [24 -
27]) clearly showing exponential (incoherent) decay of an initially prepared
seemingly equilibrium configuration. The question of a primary importance
is the understanding of how these two tunneling regimes (coherent and inco-
herent) depend on specific features of the potential energy profiles (like, for
example, our model potentials (1), (2), (6)). One qualitative answer to this
question was given long ago [28]. In this paper the authors have formulated
the irreversibility criterion. According to the criterion, coherent tunneling
should be destroyed when the density of final states is so high that typi-
cal inter-level spacings become smaller than characteristic transition matrix
elements. The aim of this paper is to formulate a similar criterion quanti-
tatively.

To illustrate these phenomena, we investigated coherent and incoherent
tunneling the under conditions of crossing diabatic potentials. As a result of
coupling and level repulsion, we get the asymmetric double-well lower adia-
batic potential with a variable shape depending on a continuous parameter
b (which describes in the limit b = 1 a crossing of two identical parabolic
diabatic potentials, crossing and in the limit b → ∞ a crossing of one-well
and linear diabatic potentials). The doublet structure of levels (generic for
double-well potentials) is valid as long as the renormalized by the adiabatic
coupling transition matrix element HLR (or tunnelling splitting) is smaller
than characteristic inter-level spacings ∆R. We calculated the non-adiabatic
factor and found that in the diabatic limit (U12 → 0) HLR goes to zero while
in the adiabatic limit (U12 →∞) the tunneling transitions do not depend on
the upper potential. In the over-barrier energy region HLR is an oscillating
function of U12, due to resonances between the states in the lower and in
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the upper adiabatic potentials. In the case HLR < ∆R, any level from the
shallow L-well is coupled by the tunneling to several levels in the R-well,
and the transitions lose their coherence.

There is also one more message of our paper. We have shown that
transitions between two levels take place only in the presence of interaction
between, e.g., the reaction coordinate and other degrees of freedom. Even
if the levels are in resonance, i.e. very close or coinciding, as in symmetri-
cal systems, the interaction with environment is required to ensure energy
dissipation and destruction of the transition coherence, which are necessary
conditions for irreversibility. In asymmetrical systems, the interaction with
environment is also necessary in order to compensate the resonance mis-
fit (i.e. the energy difference between the levels involved in the transition
takes place) by means of the inter-mode energy exchange. Thus, double-
well transitions are, in essence, multidimensional even in the case where the
potential structure seems to allow the reaction mode to be considered as an
independent one-dimensional variable.

The research described in this publication has become possible partially
due to RFFR Grants. One of us (E.K.) is indebted to INTAS Grant (under
No. 01-0105) for partial support.
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