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Abstract

Aperiodic crystals may show low lying excitations related to the
possibility of describing these structures in a higher-dimensional space.
These phasons and their non-linear extensions are discussed. Condi-
tions are given under which a sliding with low dissipation may occur.

PACS: 62.40.+i, 61.44.+p, 63.20.Ry

1 Introduction

Recent experiments have shown that the friction on the surface of a qua-
sicrystal may be very low. A natural question then is what is the role of
the aperiodicty in this phenomenon. This question leads back to properties
of other aperiodic crystals where zero frequency modes have been reported
besides the well known uniform acoustic modes (�k = 0). The additional
zero frequency modes are strongly related to the possibility of describing
aperiodic crystals in a higher-dimensional space. The zero frequency modes
are similar to new hydrodynamic modes in this space.

An aperiodic crystal is defined as a structure that shows in its diffraction
pattern sharp Bragg peaks on positions of a Fourier module, which is a
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generalization of the reciprocal lattice. The positions of the Bragg peaks
are

�k =
nX

j=1

hj�a
∗
j (integer hj). (1)

Here the vectors �a∗j form a basis of the module. The minimum number
of basis vectors n is called the rank of the module. If n = 3, the module
is a reciprocal lattice but if n > 3, the structure does not have lattice
periodicity. It is aperiodic. Examples of such structures are abundant:
modulated crystal phases of minerals, intercalated compounds, inclusion
compounds and quasicrystals. The positions of the atoms in a modulated
crystal phase are given by

�r�n,j = �n+ �rj + �fj(�q.�n), (2)

where �n is a vector of a 3-dimensional lattice, �rj is the position of atom
j in the unit cell and �fj is a periodic function with the period 1. A com-
posite structure has two (or more) subsystems which are modulated phases,
such that the lattices are mutually incommensurate and the displacement
function �f of one subsystem has the periodicity of other subsystem(s).

Aperiodic crystals of a rank n > 3may be embedded into a n-dimensional
space such that the 3-dimensional aperiodic structure is the restriction of a
periodic structure in n dimensions with the physical space. For this reason
one considers the basis vectors �a∗j of the module as projections from n basis

vectors (�a∗j ,�b
∗
j) of an n-dimensional reciprocal space:

�k = π�ks = π
nX

j=1

hj(�a
∗
j ,
�b∗j ). (3)

If the density of the aperiodic 3-dimensional structure is ρ(�r), then a periodic
function in n dimensions is defined by

ρ(�r) =

Z
ρ̂(�k) exp(i�k.�r)d�k → ρ(�r, �rI) =

Z
ρ̂(π�ks) exp(iπ�ks.(�r, �rI))d�ks. (4)

Point atoms in this approach are embedded as (n− 3)-dimensional objects
(called atomic surfaces) in n-dimensional space. A simple example is the
embedding of the modulated phase, which becomes

(�n+ �rj + �fj(�q.�n+ t), t).

This is a periodic array of lines left invariant by the lattice generated by the
4 vectors (�aj ,−�q.�aj) (j = 1, 2, 3), and (0,1).
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A similar embedding of a composite gives two arrays of lines,³
�n+ �rj + Z1t+ �fj(�q2.�n+ t, t

´
for one subsystem and

(�m+ �rk − Z2t+ �gk(�q1.�m− t), t)

for the other, where �n and �m are lattice vectors of the basic structures, and
�qj belongs to the reciprocal lattice of subsystem j. The two arrays together
have a lattice periodicity.

Figure 1: Embedding of the ground state of an incommensurate composite.

2 Phasons

The projection of the n-dimensional lattice on the additional space forms a
dense set. Otherwise the 3-dimensional structure would be periodic. This
means that there is a dense set of values of the argument t in the modulation
functions for which all mutual distances of the atoms are the same. The
ground state has an infinite degeneracy. If the modulation functions are
continuous, the potential energy does not depend on the ’phase variable’ t
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and this, in turn, implies the existence of a zero frequency mode connected
to this continuous degeneracy. Phonons that have such a character (with
possibly slowly spacial variations) are expected to have a low frequency. Due
to a possibility of describing them in terms of the phase oscillations, they
are called phasons.

The frequency of the phonons, which can be considered as ’phasons’, is
zero. However, phonons are the solutions of the linear dynamical problem
in the crystal. A phason is a shift of the modulation function for increasing
amplitude implying also non-linear terms. The same holds for the sliding
mode of an incommensurate composite as well. The question is whether
there are large amplitude non-linear oscillations with a low frequency, just
as there are low-frequency oscillation corresponding to other hydrodynamic,
namely acoustic, modes. Below we will study linear and non-linear dynamics
of quasiperiodic structures for two different models.

3 Phasons and phase waves in modulated crystals

A simple model for an incommensurate modulated phase is the discrete frus-
trated φ4 (DIFFOUR) model [1]. We assume a tetragonal crystal with one
particle per unit cell to have one degree of freedom for each atom, which is
not necessarily a displacement. It has an on-site potential, harmonic inter-
actions between first neighbours and harmonic interactions between second
neighbours along the unique axis. The Hamiltonian is

H =
X
n

Ã
p2n
2
− a

x2n
2
+

x4n
4
+
X
n0

xnxn0 + d
X
n”

xnxn”

!
. (5)

Depending on the parameters a (characterising the depth of the double well
at the site) and d (characterising the ratio between 1st and 2nd neighbour
interaction), the ground state may be periodic xn = xn+N or quasiperiodic
xn = f(q.n). Typically, for a fixed d one finds a sequence of phases at the
increase of a. For a < ai the solution is trivial (xn = 0), for ai < a < ac
it is incommensurate, and for a > ac the solution is a superstructure (peri-
odic with the period N). The wave number q of the modulation, generally,
changes and acquires also commensurate values, for which one may calculate
the phonons in the standard way. The first result is that, in general, there
is a value ad such that for ai < a < ad there is a phonon with zero frequency
and eigenvector proportional to the derivative of the modulation function.
For ad < a < ac there is a ’phason gap’.
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The calculated modulation function is continuous for the values of a for
which no phason gap exists. At a = ad the gap opens simultaneously with
the appearance of discontinuities in the modulation function. This proves
the first conjecture.

To check whether there are hydrodynamic waves, it is convenient to re-
place the non-linear equations of motion by their continuum approximation.
The Lagrangian in this approximation is

L =

Z µ
ẋ(z)2

2
+ a

x(z)2

2
− x(z)4

4
−
X

x(z)x(z ± c)−
X

dx(z)z(z ± 2c)dz
¶
.

(6)
The Euler-Lagrangian equation for this Lagrangian has a solution f(xn) =
f(nc− vt) for a small amplitude of the modulation function if

v2 < − 2− 8d.
Whether this remains true for a discrete system, can be checked by solving
the non-linear equations of motion taking as initial conditions the positions
in the ground state and the velocities proportional to the derivative of the
modulation function. The result is that for an initial speed below a critical
value the speed remains constant, but when the speed exceeds this critical
value, dissipation occurs [2].

Figure 2: Moving domain wall in the DIFFOUR model for a high initial
velocity. The domain wall (centre) starts and transforms into a domain wall
doublet moving to the right and a single domain wall moving to the left.

Near the transition to the superstructure the modulation function is
no longer of almost sinusoidal form. If we consider a transition at ac to
a structure with N = 2, the variable xn can be written as the product

382



xn = (−1)nQn, where Qn is a slowly varying function. One can also use a
continuum approximation and derive a differential equation for the function
Q(z). It has a solitary wave solution

Q(z) =
√
a+ 2− 2d tanh

Ã
(z − z0 − vt)

r
a+ 2− 2d
4− 8d− 2v2

!
.

This solution having the shape of a domain wall. This solution is again used
as initial configuration for the numerical solutions of the non-linear equations
of motion. For small values of v there is, indeed, a motion without the loss
of energy. For higher values of v energy is lost by creation of phonons, and
at even higher values the domain wall may decompose into 2 walls moving
in the original direction and one in the opposite direction. A speed range
also exists, in which the dissipation is low. We note that the model is
a Hamiltonian system with conserved energy. Dissipation here means the
energy transfer from the initial mode to phonons.

4 Phasons and sliding in composites

A simple model for incommensurate composites, in which one can verify the
conjectures concerning phasons, is the double chain model (DCM) [3]. It
has two parallel chains with atoms at the positions xn in the first chain, and
ym in the second one. The potential energy is

V =
X
n

V1(xn − xn−1) +
X
m

V2(ym − ym−1) + λ
X
nm

V3(xn − ym). (7)

Here the interaction potentials are the Lennard-Jones potentials. The lattice
constant of the first chain for λ = 0 is a, that for the second chain is b.
The ground state is formed by two modulated chains, with the modulation
periodicity of the modulation of the first chain is b and that of the second
chain is a.

For λ < λc both modulation functions are continuous, for λ > λc they
are discontinuous. By taking commensurate approximants with lattice con-
stants ak and bk such that limk→∞ ak/bk(= Lk/Nk) = a/b, phonons may
be calculated as the limit of phonons of the approximants, which gives the
following result. For λ = 0 there are two zero-frequency modes correspond-
ing to linear combinations of the acoustic modes of the two chains. For
0 < λ < λc there are 2 modes with ω = 0 as well, which are linear combi-
nations of the mode where all atoms have the same displacement, and the
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sliding mode in which the two chains move with respect to each other. For
λ > λc a gap between the two modes opens up. Therefore, there is a sliding
mode for continuous modulated subsystems.

Figure 3: Momentum of one chain in the DCM as the function of time for
various initial velocities.

The non-linear equations of motion may be integrated numerically. We
give here a short overview of the results. In the regime λ < λc, where there
is a sliding mode of zero frequency, integration of the non-linear equations
of motion with the initial condition corresponding to a relative motion of
the chains with a velocity v < vc, results in a motion with little dissipa-
tion. The initial momentum is conserved with good accuracy, except for
some cases. For the speed causing the frequency experienced by one chain
moving over the other (the ’washboard frequency’) to be equal to the fre-
quency of a phonon with a wave vector belonging to the Fourier module, a
resonance occurs. After initial oscillations, dissipation becomes important.
For a speed exceeding vc, dissipation sets in immediately. For λ > λc there
is no dissipationless regime [4].
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5 Concluding remarks

Aperiodic crystals with a smooth embedding demonstrate zero frequency
phason modes. In that case the phase waves may travel through the sys-
tem with little dissipation, provided that the initial speed is below a critical
value. For discontinuous embedding there is a phason gap and the critical
speed is zero. Quasicrystals have disjunct pieces of embedding (atomic sur-
faces). Therefore, dissipation is always present and phasons will be strongly
damped. A different situation may occur for a crystal moving over a qua-
sicrystalline surface. Depending on the interaction between the crystal and
the substrate, there may be a regime with little dissipation, i.e. with low
friction. The situation for higher dimensions is more complicated, because
the transversal and longitudinal motions may be coupled.. This has not
been discussed here. Work on this, and other important features, such as
the role of electrons and defects, is in progress.
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