
HAIT Journal of Science and Engineering, Volume 1, Issue 2, pp. 211-219
Copyright C° 2004 Holon Academic Institute of Technology

Fractional quantum Hall effect
and vortex lattices ∗

Sergey V. Iordanski

L.D. Landau Institute for Theoretical Physics,
2 Kosygin Str., Moscow 117334, Russia

e-mail: iordansk@itp.ac.ru
Received 19 October 2003, accepted 29 April 2004

Abstract

It is demonstrated that all observed fractions at moderate Lan-
dau level fillings in the quantum Hall effect can be obtained with-
out recourse to the phenomenological concept of composite fermions.
The possibility of having special topologically nontrivial many-electron
wave functions is considered. Their group classification indicates spe-
cial values of the electron density in the ground states separated by a
gap from excited states.

PACS: 73.43.-f

The experimental discovery of Integer Quantum Hall Effect (IQHE)
by K. Klitzing [1] and Fractional Quantum Hall Effect (FQHE) by Tsui,
Stormer and Gossard [2] was one of the most outstanding achievements in
condensed matter physics of the last century. Despite the fact that more
than twenty years have elapsed since the experimental discovery of Quan-
tum Hall Effect, the theory of this phenomenon is far from being complete
(see reviews [3, 4]). This is primarily true for the Fractional Quantum Hall
Effect, which necessitates the electron-electron interaction and can by no
means be explained by a one-particle theory, in contrast to the IQHE. The
most successful variational many-electron wave function for explaining the
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1/3 and other odd inverse fillings was constructed by Laughlin [5, 6]. The
explanation of other observed fractions was obtained by various phenomeno-
logical hierarchial schemes with construction of the "daughter" states from
the basic ones (Haldane [7], Laughlin [8], B. Halperin [9]).

In those works, the approximation of extremely high magnetic field was
used, in which one is restricted to the states of the lowest Landau level.
However, this does not conform to the experimental situation, where the
cyclotron energy has the order of the mean energy of electron—electron in-
teraction. Moreover, this approach encounters difficulties in generalizing to
other fractions. Computer simulations give a rather crude approximation for
the realistic multiparticle functions, because the number of particles in the
corresponding calculations with modern computers does not exceed several
tens.

The most successful phenomenological description is given by the Jain’s
model of "composite" fermions [10, 11], which predicts the majority of ob-
served fractions. According to this model, electrons are dressed with mag-
netic flux quanta concentrated in an infinitely narrow region around each
electron. It is assumed that an even number of flux quanta provides that
these particles are fermions. The inclusion of this additional magnetic field
in the formalized theory leads to the so-called Chern— Simons Hamiltonian.
Below I will describe this approach to [12].

One can perform canonical transfomation of the basis of the many par-
ticle wave functions Φ→ exp iŜΦ, where Ŝ a Hermitian operator:

Ŝ =

Z
h(ξ, ξ0)ψ+(ξ)ψ(ξ)ψ+(ξ0)ψ(ξ0)d2ξd2ξ0. (1)

Here ψ+, ψ are one particle field operators and h(ξ, ξ0) = h(ξ0, ξ). This
transformation gives canonical transformation of the field operators

ψ̃ = exp (−iŜ)ψ exp (iŜ), ψ̃
+
= exp (−iŜ)ψ+ exp (iŜ),

which have the form

ψ̃(r) = eiα̂(r)ψ, ψ̃
+
(r) = ψ+(r)e−iα̂(r). (2)

Here α̂(r) = 2
R
h(r, ξ)ψ+(ξ, ξ)d2ξ, electron spins are assumed to be iden-

tical and spin indices are omitted. "Dressing" electrons with the "flux" is
achieved by

h(r− ξ) = K arctan
ry − ξy
rx − ξx

, α(r) = 2K

Z
arctan

ry − ξy
rx − ξx

d2ξψ+(ξ)ψ(ξ).

(3)
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It is assumed that operator Ŝ is single-valued for any realization of electron
coordinates (i.e. the electron density is the sum of δ- functions) which
results in integer values of K. Transformed Hamiltonian is obtained by
direct substitution of (2) into the hamiltonian of interacting electrons:

H̃ =
1

2m

Z
ψ̃
+
(−i~∇− e

c
A+

e

c
â)2ψ̃d2r

+
1

2

Z
V (r− r0)ψ̃+(r)ψ̃+(r0)ψ̃(r0ψ̃(r)d2rd2r0

curlâ = 2KΦ0ψ̃
+
(r)ψ̃(r),

where Φ0 is the flux quantum. This Hamiltonian is called Chern-Simons
Hamiltonian with an artificial 6-fermion interaction due to the "dressing"
with no small parameters. Further treatings of this hamiltonian usually use
mean field approximation for the operator of "effective" field â :curlâ =
2KΦ0ne, where ne is the average electron density. In this approximation
we have an "effective" magnetic field additional to the external one. At the
integer fillings of Landau levels (LLs) the total field should contain cyclotron
gaps. That gives special Jain’s fractional fillings of the LLs in the external
magnetic field ν = q/(1− 2Kq) where q is an integer. The choice K = −1
gives most part of observed fractions. Performing any real calculations is
a very difficult task because the mean field approximation is used quite
arbitrary and there is no small parameter to consider fluctuation. Performed
calculations of the "Fermi liquid" state at ν = 1/2 (q → ∞) give infinite
effective mass [12].

However, the theory of FQHE can likely be developed on a different
physical basis that is associated with the existence of topological textures
stable to finite deformations. The topological classification of multiparticle
wave functions is a rather complicated mathematical problem and, to my
knowledge, no simple and at the same time effective definition of topological
classes is presently available. Classification of topological excitations is well
elaborated for a ferromagnetic 2D electron gas in a strong magnetic field
with the filling ν = 1 (skyrmions [13, 14]).

As an alternative to the composite fermion approach it is possible to con-
sider a more simple canonical transformation with the same objectives but
conserving standard 4-fermionic interaction and connected with the topolog-
ical textures of the vortex lattice type. I assume a canonical transformation
with the operator Ŝ of the form

Ŝ =

Z
ψ+µ (r)Vµν(r)ψν(r)d

2r. (4)
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I introduce here some additional index for the electron operators. It can
be either spin or some kind of isospin. In fact, a 2D electron system is
obtained by filling only one quantum state for the electron motion in trans-
verse direction. In that sense the electron states are ordered in this di-
rection and isospin acquires only one value. The energetical cost of other
transverse states with different value of isospin defines the size of an area
with the rotated isospin. Therefore, we use some spinors ψµ with the exact
meaning of spinor index not essential for future. For simplicity I consider
ordinary spin indices. The transformed spinors χµ = e−iŜψµe

iŜ have the
form χµ(r) = Uµν(r)ψ(r), χ

+
µ (r) = ψ+(r)U∗µν(r) of spinors after nonuniform

rotation by the unitary matrix Û = exp iV̂ = Uz(α(r)Uy(β(r)Uz(α(r) where
α, β, γ = α are three Euler angles and the lower indices denote the axis of
rotation.

After the canonical transformation, the Lagrangian of interacting elec-
trons takes the form (in the system of units where external magnetic field
B = 1, lB = 1, and ~ = 1)

L =

Z ·
iχ+

∂χ

∂t
− 1

2m
χ+(−i �∇+A0 + ˆ)

2χΩ

¸
d2r

+
1

2

Z
V (�r− �r0)χ+(�r)χ+(�r0)χ(�r0)χ(�r)d2rd2r0, (5)

where
Ω̂ = −iU+∇U = Ωlσl,

σl are Pauli matrices,

Ωz =
1

2
(1 + cosβ)∇α,

Ωx =
1

2
(sinβ cosα∇α− sinα∇β),

Ωy =
1

2
(sinβ sinα∇α+ cosα∇β),

and V (r−r0) is the Coulomb interaction. It is assumed that γ = α, because
the angle γ plays an auxiliary role, eliminating singularities of the matrix
Û . The spinors ψ and ψ+ are the electron-field operators obeying the Fermi
commutation rules. One can readily verify that χ+ and χ satisfy the same
commutation rules. The new Lagrangian is formally equivalent to the initial
one with Ω̂ = 0. Hence, this Lagrangian gives electronic states corresponding
to Ω̂ = 0, since one can always perform inverse transformation. However,
one may attempt to look for any other states that are characteristic of the
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Lagrangian with Ω̂ 6= 0. This program can be successfully implemented in
the case where U changes only slightly at a distance of the order of magnetic
length lB = (~c/eB)1/2 and all lB|Ωl| are small. At large distances, β → 0
so that the matrix U only rotates spinors around the z axis, which aligns
with the spin orientation in a homogeneous ferromagnet and endows them
with a nontrivial phase. The desired electronic state for operators χ and χ+

can be obtained perturbatively for small Ω̂ from a uniform ferromagnetic
state for operators χ. The existence of a topological number

K =
1

2π

Z
curlΩzd2r

which is determined by the number of revolutions through the angle α(�r)
upon going around the infinite far contour, is a nontrivial topological require-
ment. The value of K 6= 0 precisely defines the wave-function topological
class and makes the wave-function deformation into the trivial ferromag-
netic state with identical directions of all ψ spinors impossible. Thus, Ω̂
with different K characterize the topologically different classes of multipar-
ticle wave functions. The condition β = π at the points of α(�r) singularity
(of the polar-angle type) guarantees the absence of singularities for Ω̂. This
approach was suggested in [15]; various physical quantities were calculated
in [16] in the lowest order of perturbation theory. The results for the syrmion
energy coincide with those obtained by other methods (see [12, 13]). The
quantity curlΩz plays the role of an additional effective magnetic field, and
this field is a collective property of the multiparticle wave function rather
than an attribute of an individual electron. Calculations of the electron
density, energy, and spin density can be, in principle, carried out up to any
order in the derivatives of matrix U .

This example demonstrates the method of determining isolated topolog-
ical excitations. However, this approach can be extended to the analysis
of the texture and a multiparticle wave function corresponding to the finite
density of topological number K on a 2D plain. The analysis of arbitrary
textures of this type for Ω̂ involves great methodological difficulties and,
likely, bears no direct relation to the ground-state classification. We, there-
fore, assume that these textures are near-periodic, so that the average-spin
field is periodic. Essentially, I want to construct periodic vortex lattice. Let
us consider an elementary cell. We assume that the average spin vector at
the elementary cell boundary has a constant value and is aligned with the z
axis in the spin space. Thus the angle β is assumed to be a periodic function
in 2D plane, with β = 0 at the elementary cell boundaries. The angle α is
assumed to possess vortex singularity at some point inside each unit cell,
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for which we assume that β = π in order to eliminate the singularities of
Ω̂(r). One can set, for example, α =

P
αi, where the summation goes over

all elementary cells and αi(r) is the polar angle centered inside the i elemen-
tary cell. The detailed form of α(r) is not very important because Ω̂ form
some vector potential and gradient transformation can eliminate part of this
matrix. The circulations of Ωk along the sides of elementary cell are easily
calculated and give

H
Ωzdl = 2πK,

H
Ωx,ydl = 0, where K is the winding

number for α inside each cell. Thus we have a constant total flux through
each elementary cell for positive spin in the direction of external magnetic
field Φ = Bac + Φ0K (ac is the elementary cell area) and periodical "effec-
tive" magnetic field due to curlΩx,y with zero total flux. The interaction in
Lagrangian (5) is translation-invariant.

Therefore, each cell is characterized by the same topological number

K =
1

2π

Z
curlΩzd2r

that specifies the integer number of the flux quanta for the additional ef-
fective magnetic field with the average value Beff = K/ac over the sample
area. Taking ferromagnetic χ and χ+ as an approximation, the average spin
n(r) gives the K-fold mapping of any elementary cell onto unit sphere. Al-
though the sum α =

P
αi over all cells is, formally, a periodic function, it

diverges. Since only sinα and cosα enter the expression for Ω̂, the modulo
2π convergence is sufficient. I will adopt, without proof, that Ωx,y can be
regularized in a periodic manner.

It is not my intention to calculate electron energy in such textures. This
is a rather complicated problem for elementary cell sizes of the order of
magnetic length, for which the gradient expansion in Ω̂ is impossible. My
goal is to classify the electronic states with the aim of determining certain
special density values that correspond to the ground states separated by a
gap from the excited states. The problem of numerical calculation of the
gap can be posed after the classification of ground states.

We have, in fact, a system of interacting electrons in a periodic effec-
tive magnetic field (the sum of the external magnetic field and a periodic
vortex "magnetic field" in elementary cells) with nonzero average. The cor-
responding transformation group consists of the magnetic translations and
is the projective representation of the conventional translation group. Ac-
cording to the well-known analysis (Brown [17], Zak [18] for noninteracting
electrons, the band spectrum is regular only for a rational number of flux
quanta. An irrational number of quanta or a rational number with large
coprime numerator and denominator gives a highly irregular structure with
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allowed and forbidden bands dense in a certain energy region. One can as-
sume, in the spirit of the Fermi-liquid theory, that the interaction does not
affect these spectral features. Restricting oneself to the rational fluxes, we
get

Bac +KΦ0 =
p

q
Φ0, (6)

where p, q are integers and obtain

ac =
p−Kq

q

Φ0
B

for the elementary cell area. The total number of states per unit area, with
one electron per elementary cell, determines the electron density

ne =
B

Φ0

q

p− qK

and must correspond to the filled set of bands obtained from S/ac states
in the absence of average magnetic field, though in a periodic potential or
periodic magnetic field with zero average with the period specified by the
elementary cell. Here S is the sample area. Simple analysis states [19] that
this initial band is split into q subbands, each being (odd q) q- fold or (even
q) q/2-fold degenerate, and with the fraction of the number of states in each
subband being (odd q) equal to 1/q2 or (even q) to 2/q2. However, the
total number of states in all subbands is S/ac. One can assume that, even
in the presence of interaction, these states are separated from the higher-
energy states by the greatest gap. The structure of inner forbidden bands is
irrelevant because all lower-lying states are filled. Note that the evenness of
the K number is immaterial, because the Fermi commutation rules for the
operators χ and χ+ are fulfilled automatically and have no relation to the
topological number K. The occurrence of any specific numbers of vortex-
field flux quanta can be dictated by the ground-state energy. The observed
fractions in FQHE correspond to the table

K = −2, p = 1

q 1 2 3 -5 -2 -3 -4 4 ∞
ν 1

3
2
5

3
7

5
9

2
3

3
5

4
7

4
9

1
2

.

These fractions correspond to the famous Jain’s rule. Half-filling of the
LL ne = B/2φ0 in the external field corresponds to vanishingly small effec-
tive magnetic field (zero number of flux quanta per elementary cell).
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Other observed fractions correspond to

K = −1, p = 1

q -4 4 2

ν 4
3

4
5

2
3

,

where one has double of the fraction 2/3, and

K = −1, p = 2

q -7 -5 5 2

ν 7
5

5
3

5
7

1
2

.

Here one has not observed double of the fraction 1/2 with the gap (Beff 6=
0).

Thus, I have reproduced the key statement of the theory of composite
fermions (Jain’s rule) and obtained the explanation of all observed fractions
at moderate LLs filling in a unified frame without any hierarchial schemes.
These results are a quite crude and in some points hypothetical. The energy
gap, the properties of elementary charge excitations, and the conductivity
calculations, as well as the analysis of different K and p, q values, are still
open questions, and the approach to these problems is still unclear. The
preliminary results were published in [20].
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