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Abstract
Semiconductor alloy epitaxial films grown in immiscibility region

demonstrate at some temperatures and compositions the tendency to
decompose into the periodic composition modulated structures (su-
pertlattices). Modulated structures occur in the process of the film
growth in open system.
We suggest a concept of semiconductor alloy decomposition due to

a kinetic phase transition from the growth regime of the homogeneous
alloy to the growth of the composition modulated structure.
Kinetic instability is promoted by the drift of adatoms in the field

of an elastic driving force created according to Vegard’s rule by the
"frozen" fluctuations of composition in already completed thickness of
the film.
For particular growth mechanism, we focus on the step flow growth

of the film from the vapour on the vicinal to [001] surface of cubic
substrate. Temperature of decomposition is shown to increase with the
increase of elastic effects. The elastic anisotropy is taken into account.
The in—plane wave vectors of the most unstable mode of composition
fluctuations differ from elastically soft directions. It opens a possibility
for formation of superlattices oriented in arbitrary directions.
Room temperature lasing in laser diodes on the base of modulated

structure of InGaAsP alloy has been achieved by I.S. Tarasov from
Ioffe Institute RAS.
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Spontaneously formed macroscopic composition—modulated structures
have been observed in numerous alloys of III—V and II—VI semiconductors
grown by MBE, MOCVD, VPE, and LPE (for a review see, e. g., [1]). Con-
ventional attempts to explain the phenomenon have used the concept of
spinodal decomposition of an alloy [2, 3]. The thermodynamic theory of
[2, 3] developed for metal alloys deals with closed systems where the al-
loy can lower its free energy by the formation of a composition—modulated
structure. The kinetics of the spinodal decomposition [3] describes the evo-
lution of an alloy from the initial homogeneous state, which is quenched to a
temperature where it is thermodynamically unstable, to a final equilibrium
state, representing the alloy with spatial modulation of composition.

Although the theory of [2, 3] can be extended to bulk samples and
epitaxial films of semiconductor alloys [4], one should emphasize the ba-
sic difference between formation mechanisms and observation conditions of
composi-tion-modulated structure in metal alloys, on the one hand, and
those in semiconductor alloys, on the other hand. i) The formation of
composition—modulated structures in metal alloys occurs in closed systems
under a long time annealing (aging). For typical temperatures of aging,
T ≈ 600 — 10000 C, characteristic values of bulk diffusion coefficients are of
the order of D ≈ 10−11 — 10−8 cm2s−1. These diffusion coefficients are suffi-
ciently large to promote the formation of composition—modulated structures
on an accessible time scale. ii) Composition—modulated structures in semi-
conductor alloys are observed in as—grown samples which implies that these
structures are being formed in open systems in the process of crystal growth.
Bulk diffusion coefficients in semiconductors at typical growth temperatures
(T ≈ 6000 C) are of the order D ≈ 10−19 — 10−16 cm2s−1 [5]. These diffusion
coefficients are too small to develop a composition—modulated structure dur-
ing the growth time, and another kinetic mechanism than the bulk migration
of atoms is needed for the structure formation.

In the present paper we study the instability which may occur in an
open system in the process of growth of a binary alloy A1−cBc, and our
treatment is applicable also to the growth of a ternary semiconductor alloy
A1−cBcC. The focus is given on the instability of the alloy growth with
respect to composition fluctuations δc. The theory linear in δc is developed,
and the criterion is found that the amplitude of composition fluctuation
increases with the epitaxial film thickness. This means that the growth of a
homogeneous alloy is unstable, and the growth may result in an alloy with
a spatial modulation of composition.

We consider the growth of an alloy from the vapour phase. We study
epitaxial film on a substrate where the layers from the 1st to the Mth are
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completed, and the (M+1)-st layer is the growing one. Growth on atomically
smooth surfaces proceeds via the surface migration of adatoms and via their
incorporation into the growing layer. In the process of growth of each Lth
layer (1 ≤ L ≤M), there occurs the fluctuation of alloy composition δc(r;L),
where r = (x, y) is the two—dimensional position vector. Since we neglect the
migration of atoms in the bulk, the composition fluctuations are “frozen”
after the given layer is covered by subsequent layers.

First, “frozen” fluctuations of composition in the top completed Mth
layer, δc(r;M), affect the migration of adatoms in the next, growing, (M +

1)-st layer via a short—range potential U (A,B)sr (r;M + 1) acting on adatoms
A and B. Second, “frozen” fluctuations in all completed monolayers 1 ≤
L ≤ M create, in accordance with the Vegard’s rule, the long—range strain
field. Therefore a long—range potential U (A,B)lr (r;M + 1) appears which is
proportional to the strain tensor at the surface εij . The total potential
acting on adatoms is the sum of short—range and long—range terms,

U (A,B)(r;M + 1) = V (A,B)sr δc(r;M) + V
(A,B)
lr ij εij(r; z)

¯̄̄̄
z=Ma

, (1)

where the coefficients V (A,B)lr ij may be called deformation potentials of the
adatoms A or B, and a is the lattice parameter. The strain tensor may be
given in terms of the static Green’s tensor Gij
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´
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The chemical potential of the rarified gas of adatoms on the surface is
the sum of the potential UA,B and of the entropy term related to the areal
concentration of adatoms N (A,B),

µ(A,B)(r) = U (A,B)(r)− T ln(a2N (A,B)(r)). (3)

The gradient of the chemical potential in the inhomogeneous system
causes the surface flux of adatoms [7],

j(A,B)(r) = −T−1D(A,B)∇µ(A,B)(r), (4)
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where D(A,B) is the diffusion coefficient. By substituting the expression for
the chemical potential, one gets the surface flux of adatoms as a sum of the
diffusion and drift terms:

j(A,B)(r) = −D(A,B)∇N (A,B)(r)− T−1N (A,B)(r)D(A,B)∇U (A,B)(r). (5)

If there is a oversaturation in the gas phase, there occurs the flux of atoms
from the gas to the surface characterized by the deposition rate G

(A,B)
0 .

The concentration of adatoms and surface fluxes of adatoms may be writ-
ten as sums of equilibrium quantities N (A,B)

eq (r), j(A,B)eq (r) and excess non—
equilibrium quantities ∆N (A,B)(t; r), ∆j(A,B)(t; r) caused by the oversatu-
ration. The excess surface flux ∆j(A,B) of adatoms may be written in terms
of the excess areal concentration ∆N (A,B) of adatoms as a sum of diffusion
and drift contributions:

∆j(A,B)(t; r) = −D(A,B)∇∆N (A,B)(t; r)

−T−1D(A,B)∆N (A,B)(t; r)∇U (A,B)(r) . (6)

The excess non—equilibrium areal concentration of adatoms ∆N (A,B)(t; r)
and the excess surface flux of adatoms ∆j(A,B)(t; r) obey the continuity
equation:

∂∆N (A,B)(t; r)

∂t
+ div∆j(A,B)(t; r) = G

(A,B)
0 − ∆N

(A,B)(t; r)

τ
(A,B)
desorption

. (7)

Here τ
(A,B)
desorption is the average desorption time. We emphasize here that

the deposition and desorption terms in the right hand side of Eq. (7) are
particular features of an open system.

The set of coupled equations (6), (7) allows to find the excess concentra-
tion of adatoms ∆N (A,B)(t; r) and surface fluxes of adatoms ∆j(A,B)(t; r).
Boundary conditions needed for these equations depend on the growth mech-
anism.

We focus on the step—flow growth on a surface vicinal to the (001) surface
of a cubic crystal. A perfect vicinal surface displayed in Fig. 1 consists of
(001) terraces of equal width d separated by steps. Each step consists of
[110] straight sections of equal length lK separated by kinks. It was shown
in Ref. [8] that the crystal growth on such a surface proceeds via kink flow
and step flow, it can be stable against step bunching and step meandering,
and the perfect geometry of the vicinal surface persists during the growth.

We consider fluctuations of composition with the characteristic scale of
inhomogeneity r0 large compared to the spacing between kinks, and treat
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Figure 1: Growth of an alloy on a vicinal surface. Layers are defined in such
a way that they repeat the stepped shape of the substrate. The dashed line
depicts the top completed layer.

kinks as continuously distributed along steps (the so-called approximation
of continuous line sinks). These sinks are asymmetric with respect to lower
and upper terraces since the barrier for adatoms approaching the sink from
the upper terrace is higher than that for adatoms on the lower terrace.
Corresponding boundary conditions at the nth line sink positioned at x =
xn = nd read:

∆N (A,B)

¯̄̄̄
x=xn+η

= 0, ∆j(A,B)
¯̄̄̄
x=xn−η

= 0 , (8)

where η → +0 [9].
The set of coupled equations (6),(7) with the boundary conditions (8)

has been solved in the perturbation series with respect to the parameter
U/T up to the first—order terms, and both ∆N(t; r) and ∆j(t; r) have been
calculated [10]. After the fluxes of both adatoms A and adatoms B attach-
ing the line sink at the given point are known, it is possible to find the
fluctuation of alloy composition δc(r) which is being frozen at this point of
the growing layer. The fluctuation δc(r;M + 1) formed after the comple-
tion of the (M + 1)-st layer is found in the form of the linear response to
the potential U (A,B)(r;M + 1) acting on adatoms during the growth of the
(M + 1)-st layer.

The set of linear equations (6) - (8) describes the dependence of alloy
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composition fluctuation eδc(k;M) on the layer’s number M :
eδc(k,M) = c(1− c)

T
×"

Z(k) eδc(k,M − 1) + ka
3X

s=1

Ws(k)
M−1X
L=1

exp[−αska(M − L) eδc(k, L)]# . (9)

Here Z(k) andW (k) are short—range and long—range terms. It was shown in
Ref. [10] that one may seek the solution in the exponential form eδc(k;L) ∼
exp(γkaL). Then the inequality Reγ(k) > 0 yields the criterion that the
fluctuation amplitude increases with the monolayer’s number.

The mechanism responsible for this amplification is the drift of adatoms
of the growing layer in the effective potential U created by the “frozen”
fluctuations of alloy composition in the completed layers. The diffusion
component of the surface flux of adatoms tends to smooth out fluctuations
of composition. For high temperatures, diffusion dominates drift, and no
amplification of fluctuation occurs. At a certain critical temperature Tc and
at a certain wave vector kc, there occurs amplification of the fluctuation
amplitude. This temperature is the temperature of kinetic phase transition
between the growth of the homogeneous alloy and the growth of the alloy
with spatial modulation of alloy composition. At temperatures below Tc,
drift dominates diffusion, and there exists a region in the k—space where
fluctuations of composition increase from layer to layer.

The temperature Tc and the wave vector of the most unstable mode kc
are determined by the interplay of several tendencies. First, the Green’s
tensor from Eq. (2) is determined by the symmetry of bulk elastic moduli.
Second, the symmetry of the deformation potential V (A,B)lr ij from Eq. (1) is
determined by the symmetry of the surface. As a result of this interplay,
any direction of the wave vector of the most unstable mode of composition
fluctuations (“the soft mode”) can occur.

Calculations of the kinetic phase transition temperature show that Tc
increases with the increase of adatom deformation potential. It means that,
in contrast to the effect of long—range elastic forces on the thermodynamic
instability of alloys, where they hinder the phase separation, they favor
kinetic instability. The reason is that adatoms are attracted by domains of
the surface with the excess concentration of like atoms, i. e., atoms with
larger radius are attracted by domains which are under tensile strain, and
smaller atoms are attracted by domains under compressive strain.

Fig. 2 displays the result of model calculations of Reγ(k) which have
been performed for d = 100a, lk = 10a, isotropic deformation potential,

263



Figure 2: Amplification coefficient Reγ(k) as a function of the 2D wave
vector. Regions in the k—space where Reγ > 0 correspond to unstable
fluctuations. d = 100a, lk = 10a, Dyy = 5Dxx, Wxx =Wyy.

anisotropic diffusion coefficient of adatoms (D(A)
yy = 5D

(A)
xx , D

(B)
yy = 5D

(B)
xx ),

and T = 0.7Tc. There is a region of unstable modes with Reγ > 0 at small
ky satisfying the criterion |ky|lK ¿ 1 which justifies the approximation of
continuous line sinks.

To conclude, the kinetic mechanism is proposed of the amplification of
alloy composition modulation with the thickness of the epitaxial film. Long—
range elastic interaction favors the kinetic instability and results in the in-
crease of the kinetic phase transition temperature. For different values of ma-
terial parameters, one may expect the occurance of composition—modulated
structure with any other orientation.
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