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Abstract

The low energy exitation spectrum is found for a layered super-
conductor with small number of impurities inside the vortex core. All
levels are found to be correlated. The level shift increases as the im-
purity comes closer to the vortex center. At some distance from the
impurity to the vortex center levels practically cross. It is very impor-
tant that all levels with small energy cross simultaneously. In such a
case a statistical description of level position is impossible. If we ne-
glect the weak repulsion of levels in this region, the positions of levels
as a function of the distance from the vortex core to the impurity form
two families of crossing straight lines. This leads to a strong enhance-
ment of the conductivity in superclean layered superconductors.
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1 Introduction

The I-V characteristics of superconductors with weak pinning displays anoma-
lous properties [1, 2]. Some of them are very difficult to explain in the
framework of the quasiclassical approach. In quasiclassical approach there
are three limiting cases, determined by the values of the parameters: the
size of the gap ∆ in the single-particle excitation spectrum, the level spacing
ω0 inside the vortex core ω0 ∼ ∆2/εF (εF - Fermi energy), and the elec-
tron mean collision time τ tr. The three limiting cases are: 1) the dirty limit
τ tr∆¿ 1, 2) the clean limit ∆À τ−1tr À ω0, and 3) superclean limit when
the condition ω0τ tr À 1 is fulfilled. In the dirty limit the vortex core is in
a ”normal” state in accordance with the picture of Bardeen and Stephen
[3]. Bardeen and Sherman [4] and Larkin and Ovchinnikov [5] derived an
expression for conductivity in a mixed state for low temperatures and small
magnetic fields B ¿ HC2 in the case of moderately clean superconductors.
In this case, compared to the previous picture, a logarithmically large factor
arises in conductivity. This factor is related to shrinkage of vortex core at
low temperatures T ¿ Tc [6].

The superclean case was studied in Ref. [7]. It was found that the level
spacing ω0 inside the vortex core plays the same role as the cyclotron fre-
quency ωc = eH/mc in a normal metal. It was also found, that in the su-
perclean limit the Hall component of the conductivity tensor is the largest
one σ ≈ ene/B, where ne is the electron density in the conduction band and
B is the magnetic field. The dissipative part of the conductivity tensor is
smaller by a factor (ω0τ tr)

−1. Hence the dissipative part of the resistance
tensor is the same as in moderately clean superconductors.

The quasiclassical approach is probably violated in the two-dimensional
case (in layered superconductors), because the excitation spectrum in the
vortex core is then discrete. Guinea and Pogorelov [8] considered the dissipa-
tion in the vortex state as a result of transitions between unperturbed levels,
induced by ”moving” impurities. Such a perturbation theory approach is
valid only in the high velocity limit V À υF (∆/εF )

2.
Here we consider the superclean limit. We have found, that in this region

a new mechanism of dissipation arises [9]. In the superclean limit no more
than one impurity can be found at distances of the order of the correlation
length ξ = υF /∆ from the vortex center (zero of ∆). In such a case, a
statistical description of level position is not applicable. If an impurity is
placed at a distance of order of ξ from the vortex center and is weak (Born
parameter is small), then the level shifts are also small. It is important
that levels with even and odd orbital momentums are shifted in opposite
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directions. The level shift increases as the impurity comes closer to the
vortex center. At some distance from the impurity to the vortex center
levels practically cross. It is very important that all levels with energy
|ε| À ∆ cross simultaneously.

Figure 1: The excitation spectrum as a function of the impurity distance
from the vortex center. The parameter (π2/2ω0pF )(∂I1,am/∂a...) equals
0.02. The quantity δa = a− a0, with a0 given by Eq. (19).

If we neglect the weak (of order ω0/pF ξ) repulsion of levels in this region,
then position of levels as a function of the distance from the vortex core to
the impurity form two families of crossing straight lines. Outside the dan-
gerous level crossing region these lines are practically horizontal (see Fig. 1).
The size of the dangerous zone, where the level lines can be considered as
crossing, depends on the Landau-Zener parameter and hence on the vortex
velocity. For the vortex velocity V in the range ω0 À pFV À ω0(∆/εF )

2

the distribution function of excitations inside the core of the vortex does
not change until the impurity comes into the dangerous zone. It changes
essentially when the impurity goes through the dangerous zone. Excitations
which arise when the impurity goes through this zone determine the value
of the dissipative part of the conductivity. Such a mechanism of dissipation
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is essential for the electrical field E lying in the range

B
υF
c

Ã
∆

εF

!2
À E À B

υF
c

³
∆/εF

´3
,

where c is the velocity of light. As it was found in [9], this mechanism of
dissipation leads to the dissipative part of the current density that is given
by

jx =
a0nimp
φ0

ε
5/3
F

∆2/3

Ã
E

υFB

!2/3
, (1)

where a0 is the distance from the ”dangerous” region to the vortex center
a0 ∼ θξ, and θ is the Born parameter which is equal to the phase shift of an
electron scattering off the impurity. Usually θ ∼ 1. Hence (pFa) À 1, and
the current density essentially exceeds the value obtained in the framework
of the quasiclassical approximation. In the range pFaÀ ω0τ tr À 1 the Hall
angle is small.

2 The Low-Energy excitation spectrum for an im-
purity at the distance a from the vortex center
in the range aÀ ξ(∆/εF )

1/2

The excitation spectrum E in the vortex state can be found as a solution of
the eigenvalue problem for the following system of equations [10, 11]Ã
− 1
2m

∂2

∂r2
− µ+ V (r)−E; ∆(r)

∆∗(r); 1
2m

∂2

∂r2
+ µ− V (r)−E

!µ
f1
f2

¶
= 0, (2)

where∆ is the order parameter, µ is the chemical potential, and V (r) - is the
potential of impurities. We suppose here that the magnetic field B is weak
(B ¿ HC2) and omit the vector potential in Eq. (2). Below, we consider
the two-dimensional case. We suppose also that impurities are short range.

In our problem the order parameter ∆ in the absence of impurities is
given by the expression

∆(r) = ∆(r) exp(iϕ),

where ϕ is polar angle and r = |r| .
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The low energy excitation spectrum E0n in the absence of the impurity
was found in [10]

E0n = −(n− 1/2)ω0, (3)

where

ω0 =

∞Z
0

dr∆(r)

pF r
exp(−2K(r))

, ∞Z
0

dr exp(−2K(r)), (4)

K(r) =

rZ
0

dr1∆(r1)/υF

If Kramer-Pesh effect takes place then with logarithmic accuracy we
obtain from Eq. (4)

ω0 =
∆2

εF
ln

µ
∆

T

¶
, ∆ = ∆(∞). (5)

The eigenfunction corresponding to the eigenvalue of (3) is

f̄n =

µ
f1
f2

¶
n

= C̃ exp(−K(r))
µ
einϕJn(pF r)

−ei(n−1)ϕJn−1(pF r)
¶
, (6)

where C̃ is the normalization constant Jn - Bessel function, n = 0,±1,±2.
System (2) possesses a very important property: if E is an eigenvalue

with eigenfunction (f1, f2), then — E is also an eigenvalue and the corre-
sponding eigenfunction is (f∗2 ,−f∗1 ). This property holds in a magnetic field
too.

For the excitation spectrum E in the presence of impurities inside the
vortex core, we obtain from Eq. (2) the following system of equations

det
³
(ε̂−E) + Â

´
= 0, (7)

where the operator Â is given by its matrix elements. In basis (6) we have

Akn =

¿
f̄+k

µ
V (r− a); 0
0; −V (r− a)

¶
f̄n

À
. (8)
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For a single impurity a is the position of the impurity relative to the
vortex center, and

ε̂kn = δknE
0
n. (9)

In Eq. (8) the values of r such that r À p−1F are essential. We can
use therefore an asymptotic expansion of Bessel functions to find matrix
elements Akn. A simple calculation gives

Akn = e
i(k−n)ϕa

(
I1(a) cos

Ã
π(n+ k)

2

!
− I2(a) sin

Ã
π(n+ k)

2

!)
, (10)

where ϕa is the polar angle of the vector a and the quantities I1,2 are given
by the equation

µ
I1
I2

¶
=
C2

a
e−2K(a)

Z
d2rV (r)

 sin
³
2pF

³
a+ (ar)

a

´´
cos
³
2pF

³
a+ (ar)

a

´´  . (11)

The normalization constant C is defined by:

C2 =
n
2π

∞Z
0

dr exp(−2K(r))
o−1

. (12)

If there are several impurities inside the vortex core, then the operator
Â in Eq. (7) is the sum of Âi over all impurities. Therefore

A
{ai}
kn =

X
i

Akn(ai), (13)

where Akn is given by Eq. (10).
It follows from Eqs. (10), (13) that the transition matrix elements Akn

are separable. Therefore Akn can be expressed as a finite sum of terms of
the type ÃjkB̃

j
n

Akn =
X
j

ÃjkB̃
j
n. (14)

As a result we can obtain an expression for the excitation spectrum in
an explicit form. If only one impurity is placed inside the vortex core, then
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we obtain from Eqs. (7), (10), (14) the following equation for the excitation
spectrum

det


1 + I1

N+1P
L=−N

1
ε2L+E

; I2
N+1P
L=−N

1
ε2L+E

I2
N+1P
L=−N

1
ε2L−1+E ; 1− I1

N+1P
L=−N

1
ε2L−1+E

 . (15)

For the linear spectrum given by Eq. (3), we obtain in the limit of
N →∞

N+1X
L=−N

1

ε2L +E
=

π

2ω0
cot

Ã
π

Ã
1

4
+
E

2ω0

!!
, (16)

N+1X
L=−N

1

ε2L−1 +E
= − π

2ω0
cot

Ã
π

Ã
1

4
− E

2ω0

!!
.

Using Eq. (16), we reduce Eq. (15) to the form [9]

1 +
π2((I1)

2 + (I2)
2)

4ω20
+

πI1
ω0 cos(πE/ω0)

= 0. (17)

It follows from Eq. (17) that the low energy excitation spectrum is
strongly correlated even in the presence of an impurity inside the vortex
core. If E0 is a spectrum point, then all solutions of Eq. (17) are given by
the equation

E = ±E0 + 2ω0N, N = 0,±1,±2... (18)

Hence, the discrete spectrum is given by two sets of equidistant points.
Functions I1,2 are periodic with period π/pF , both defined by the same
function with a shift by a quarter of the period.

The amplitude I1am of these functions is a smooth function of the pa-
rameter a/ξ and is given by Eq. (11).

With an accuracy of ω0(∆/εF ), a point a0 exists such that

I1.am(a0) = −2ω0
π
; I2(a0) = 0. (19)

Hence, at points a0 + δa given by equation

δa =

Ã
π

pF

!
N ; N = 0,±1,±2, ... (20)
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we have

E0 =
δa

2

Ã
∂I1.am
∂a

!
a0

. (21)

Eq. (21) means that in the vicinity of the points of the trajectory of the
vortex, given by Eq. (19), there is a set of points separated by the distance
δa, where spectrum lines are practically crossing (see Fig. 1). We denote the
area in the vicinity of such points as the dissipation region. If the impact
parameter of the trajectory is smaller then some critical value, then on
such a trajectory there are two dissipation regions. When the vortex moves
through these two dissipation regions many excitations are created inside
the vortex core. The contribution of these excitations to the dissipative
part of conductivity is found in [9].

3 One impurity at small distances a ¿ ξ(∆/εF )
1/2

from the vortex center

First of all, we shall consider one impurity with a short-range potential
placed at the vortex center. At the distance ρÀ p−1F from the vortex center
we can use, for the solution of Eq. (2), the quasiclassical approximation with
the first order correction terms. Indeed this correction terms will give an
expression for the spectrum. At small distances of order of p−1F we can omit
the nondiagonal elements in Eq. (2). As a result we obtain the following
expression for the spectrum

En = −(n− 1/2)ω0 + υF tan

Ã
θn−1 − θn

2

!, ∞Z
0

dρ exp(−2K(ρ)) , (22)

where θn is the scattering phase in a state with angular momentum n in the
presence of the impurity potential V (r). The corresponding eigenfunction
is given by the expression

f̄n =

Ã
f1
f2

!
=
C̃

2
e−K(ρ) · (23)

·
Ã
einϕ[Jn(pFρ+ θn) + Jn(pFρ+ θn−1)]
−ei(n−1)ϕ[Jn−1(pFρ+ θn) + Jn−1(pFρ+ θn−1)]

!
,
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where C̃ is a normalization constant. Suppouse now that the impurity is
placed in a distance a from the vortex center such that |a| ¿ ξ(∆/εF )

1/2.
We make a transformation in Eq. (2) to the coordinate system with the
origin at the impurity. Then we obtain
− 1
2m

∂2

∂r2
− µ+ V (r)−E; |∆|eiϕ +

Ã
a ∂
∂r

!
(|∆|eiϕ)

|∆|e−iϕ +
Ã
a ∂
∂r

!
(|∆|e−iϕ); 1

2m
∂2

∂r2
+ µ− V (r)−E


µ
f1
f2

¶
= 0.

(24)

From Eq. (24) we obtain the following equation for the excitation spec-
trum

det
³
(ε̂−E) + Â

´
= 0, (25)

where ε̂kn = Enδnk and En is given by Eq. (22). The operator Â is given
by the matrix elements Âkn in the basis defined in Eq. (23)

Âkn =

*
f̄+k

Ã
0;

³
a ∂
∂r

´ ¡|∆|eiϕ¢¡
a ∂
∂r

¢
(|∆|e−iϕ); 0

!
f̄n

+
. (26)

A simple calculation with the help of Eqs. (23), (26) gives

Âkn = −πaC2
∞Z
0

dρ
|∆(ρ)|
ρ

e−2K(ρ) · (27)

·
(
δk,n+1e

−iϕa cos

Ã
θn−1 − θn+1

2

!
+ δk,n−1eiϕa cos

Ã
θn − θn−2

2

!)
,

where the constant C is given by Eq. (12). It follows from Eq. (27) that in
the operator of Eq. (25) only the diagonal and near-diagonal elements are
nonzero. To solve Eq. (25) we define the function B(I,E, n) in the following
manner

B(I,E, n− 1) = −En −E − I
2 cos2 ((θn−1 − θn+1)/2)

B(I, E, n)
, (28)

17



where

I = πaC2
∞Z
0

dρ
|∆|
ρ
e−2K(ρ), I/ω0 = pFa/2. (29)

With the help of function B, the Eq. (25) for spectrum is reduced to the
following simple form

det


B(I,E,1) −Ieiϕa cos( θ0−θ2

2
) 0 0

−Ie−iϕa cos( θ0−θ2
2

) E0−E −Ieiϕa 0

0 −Ie−iϕa E1−E −Ieiϕa cos( θ0−θ2
2

)

0 0 Ie−iϕa cos( θ0−θ2
2

) B(I,−E,1)

 = 0

(30)

Equation (28) means that the quantity B(I, E, 1) can be presented as
an infinite fraction

B(I, E, 1) = −E2 −E −
I2 cos2(θ1−θ32 )

−E3 −E − I2 cos2(
θ2−θ4
2

)

−E4−E− I2 cos2(
θ3−θ5
2 )

...B(I,E,n+1)

(31)

Fraction (31) converges very quickly, if for B(I, E, n+1) the expression

B(I, E, n+ 1) =
n
(n+ 1/2)ω0 −E +

p
((n+ 1/2)ω0 −E)2 − 4I2

o
/2,

(32)

(n+ 1/2)ω0 ±E À |I| (33)

is used.
Suppouse now, that the impurity is of a small size, so that only S scat-

tering is essential. Suppouse also that the impurity potential is of the order
of the atomic one and hence the following inequality takes place

ε0 = ∆tan

Ã
θ0
2

!
À ω0. (34)

Then, in the first order approximation Eq. (30) for low-energy excita-
tions decouples in two independent branches

B(I, E, 1) = 0 and B(I,−E, 1) = 0. (35)
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Hence we obtain two independent families of spectrum lines. In this
approximation they will cross, and only in the next approximation with
respect to the parameter (ω0/ε0)

2 will a gap in the crossing points open.
For small values of E we have

B(I,E, 1) = B + αE, (36)

where

α =
∂B(I, E, 1)

∂E
. (37)

Substituting expression (36) into Eq. (30) we obtain the following equation
for the lowest energy level near the crossing points

E2α2ε20 = B
2[I cos(θ0/2)]

2 + [ε0B + (I cos(θ0/2))
2]2. (38)

Hence the value of the gap δ near the crossing point is equal to

δ =
|I cos(θ0/2)|3

|αε0|
p
ε20 + (I cos(θ0/2))

2
. (39)

In Eq. (37) the quantity α should be taken at the point

α =
∂B(I, E, 1)

∂E

¯̄̄̄
¯
B=− ε0[I cos(θ0/2)]

2

[I cos(θ0/2)]
2+ε20

. (40)

The value of the gap δ is given (by the order of magnitude) by the
equation

δ ∼ ∆(a/ξ)3. (41)

Equation (30) for the spectrum can be reduced to the form"
I2

E0
cos2

Ã
θ0 − θ2
2

!
+
B(I, E, 1) +B(I,−E, 1)

2

#2
− (42)

−
"
B(I,E, 1)−B(I,−E, 1)

2
− EI

2

E20
cos2

Ã
θ0 − θ2
2

!2#
+
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Figure 2: The low-energy excitation spectrum at small distances a from the
impurity to the vortex center; I/ω0 = pFa/2, see Eq. (28); θ ¿ 1;E0/ω0 =
50.

+
I2 −E2
E20

B(I, E, 1)B(I,−E, 1) +
"
EI2

E20
cos2

Ã
θ0 − θ2
2

!#2
= 0.

Near the crossing points the last two terms are small (of order of (I3/E0)
2)

and lead to the repulsion of spectrum lines.
Energy levels as a function of the shift a (or quantity I ∼ a) are given

in Fig. 2. In the inset of Fig. 2 the equation for two spectrum branches are

E/ω0 − 1.073 = δ(0.1335t±
p
1 + t2), (43)

t = 1.343(I/ω0 − 2.3172)/δ,

δ = 3.2 · 10−3.
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4 Landau-Zener tunneling near the crossing point
of spectrum lines

Near the crossing point of the spectrum lines, given by Eq. (16), we can put

πI1
2ω0

= −1 + y; πI2
2ω0

= 2pFX; X = V t, (44)

where V is the velocity of a vortex. For two close spectrum points E± we
obtain from Eq. (17) the following values

E± = ±ω0
π
ε(t); ε(t) =

p
y2 + (2pFX)2. (45)

The usual Landau-Zener consideration leads to the following value W++

for a particle to remain on the same branch after collision [12]

W++ = 1− exp
Ã
− ω0y

2

2pF |V |

!
. (46)

Eq. (46) enables us to find the energy transferred to the vortex in each
collision with an impurity.

5 Conclusion

In the two-dimensional case the excitation spectrum in vortex core is dis-
crete. Then for small values of the vortex velocity V , such that

V ¿ υF (∆/εF )
2 (47)

an excitation can arise only at spectrum line crossing points. Such crossing
points are located only in dissipation regions, or if the vortex center is close
to the impurity. For small impurities concentrations an impurity on the
distances a < ξ from the vortex center leads to the transition of quasipar-
ticles to highly excited states. This leads to the strong enhancement of the
conductivity in superclean layered superconductors [9].
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