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Abstract

Resonant transmission and localization of energy in 1D disordered
systems have been studied. It is shown how the existence and prop-
erties of a resonance at a given frequency are related to the internal
structure of the random realization. A mapping of the stochastic scat-
tering problem onto a deterministic quantum problem is developed. It
enables one to exploit quantum mechanical formulas for the quantita-
tive description of the spectral density, transmission coefficients and
spatial energy distributions at the resonances using the total length of
the sample and the localization length as the fitting parameters. The
validity of the analytical results derived from the mapping had been
checked by extensive numerical simulations.
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There are several definitions and indications of the localization of wave
fields in open disordered systems. The most direct and unambiguous one is
the existence of the quasi-discrete set of frequencies (energies) at which the
wave (quantum particle) is literally localized (trapped) in a small (compare
to the total size) area inside the system [1, 2]. In this paper, we investigate
the statistical properties of the localized states (modes, or resonances) in a
one-dimensional (1D) media and their connection to the internal structure
of disordered samples. It is shown that at each resonant frequency the field
is localized in a segment that is in itself transparent for this frequency and is
bounded from both sides by opaque ones, constituting an effective resonant
cavity with high Q-factor. The stochastic scattering problem is mapped
onto a quantum mechanical problem of tunnelling and resonant transmis-
sion through an effective two-humped regular potential. With the formulae
derived on the basis of this mapping, we find statistical characteristics of
the resonances, namely, their spectral density, spectral and spatial widths,
and amplitudes. We show that the transmission coefficient at a resonant
frequency, being independent of the total length, L, of the sample, is deter-
mined only by the location of the effective cavity, and therefore is totally
different from the typical transmission that decays exponentially with in-
creasing L. The maximal transmission, T , is provided by the modes that
are located in the centre of the sample, while the highest energy concen-
tration takes place in cavities shifted towards the input. The number of
frequencies with T ' 1 is shown to be L/lloc À 1 times smaller than the to-
tal number of resonances (lloc is the localization length). The results enable
us to solve an inverse problem, namely, to predict (with some probabil-
ity) for each resonance the position of the effective cavity and the maximal
pumping amplitude, using the total length of the sample and the localiza-
tion length as the fitting parameters, and the transmission coefficient as the
only (measurable) input datum. The analytical results deduced from the
quantum-mechanical analogy are in close agreement with the results of the
numerical experiments.

We consider a plane monochromatic wave with unit amplitude incident
from the left (x < 0) on a 1D disordered sample consisted of N layers
with random widths and fluctuating refractive indices. Typical frequency
dependence of the transmission coefficient on the wavelength λ is shown in
Fig. 1. One can see that along with a continuum of wavelengths for which
the transmission coefficient is exponentially small (∼ exp(−2L/lloc)) (Fig. 1,
λa), there is a discrete set of points on λ-axis (like λb and λc in Fig. 1), where
T (λ) has well pronounced narrow maxima . The amplitude distributions
induced by the corresponding waves inside the sample are shown in Fig. 2.
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Figure 1: Transmission coefficient as a function of the wavelength.

While at a typical frequency (realization) the amplitude of the field decreases
exponentially from the input (Fig. 2, λa), the resonances, (Fig. 2, λb, λc),
exhibit essentially non-monotonous spatial distribution of the amplitude.
Ii is important to note that the localization of energy takes place for all
resonances, and not only for those with the transmission coefficient close to
one (compare T (λb) and T (λc) in Fig. 1). The amplitude of a maximum
depends on its location in space, which in its turn is uniquely determined
by the internal structure of the realization. As it is shown below, this fact
provides means for evaluating the resonant amplitude and the coordinate
of the point where the resonant mode is localized if the total transmission
coefficient is known.

Fig. 3 demonstrates the connection between the amplitude distribution
and the transparency of different parts of the sample. It presents the in-
tensities of the field generated by resonant frequencies (λb, λc in Fig. 1)
inside the whole sample (thin curve), and in their left (thick gray curve),
middle (thick black curve), and right (thick light gray curve) parts when
they are taken as a separate sample each. It is seen that the middle sections
where the energy is concentrated are almost transparent for the wave, while
the side parts are practically opaque for the resonant frequency. Numerical
analysis shows that this structure is inherent in all resonant realizations.
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Figure 2: Amplitude of the field inside the sample as a function of the
coordinate for three wavelengths marked in Fig. 1.

Structures of this type have been studied in the quantum mechanical
problem of the tunnelling and resonant transmission of particles trough a
regular (non-random) potential profile consisted of a well bounded by two
potential barriers [3]. Although the physics of propagation in each system
is totally different (interference of the multiply scattered random fields in
a randomly layered medium, and tunnelling through a regular two-humped
potential), the similarity turns out to be very close. Indeed, in both cases
the transmission coefficients are exponentially small for most of frequencies
(energies), and have well-pronounced resonant maxima (sometimes of order
of unity) at discrete points corresponding to the eigen levels of each system.
The energy at a resonant frequency is localized in the transparent part,
and the total transmission depends drastically on the position of this part.
More than that, even qualitatively the intensity distributions, Fig. 2, and
the corresponding values of the transmission coefficients compare favorably
with those calculated for a two-humpered potential profile, if its parameters
have been chosen properly.

To map the stochastic scattering problem onto a deterministic quantum
mechanical one, that is to say, to construct an appropriate effective regu-
lar potential that provides the same transmission and the interior intensity
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Figure 3: Amplitude of the field as a function of the coordinate inside the
whole sample (black curves), in the left (blue curves), middle (red curves),
and right (green curves) parts taken as a separate sample each. λ = λb and
λ = λc.
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distribution, we refer to the theory of the tunnelling through two barriers
separated by a potential well [3]. In WKB approximation all quantities of
interest can be expressed via the length of the well and the tunnelling am-
plitudes (transmission coefficients) of the adjacent barriers. To determine
properly the length of the (effective) well in disordered systems we note
that the existence of a transparent segment inside a random sample is the
result of a very specific (and therefore rare) combination of phase relations.
Obviously, the longer such segment is, the less is the probability of its oc-
currence. On the other hand, the typical scale in the localized regime is the
localization length. Hence, the minimal and, therefore, the most probable
size of the effective well is lloc. If the centre of the transparent segment of
a resonant realization is shifted on the distance d from the centre of the
sample, the lengths of non-transparent parts are

l1,2 =
L− lloc
2

± d. (1)

These parts are typical random realizations with the exponentially small
transmission coefficients

T1,2 = exp (−2l1,2/lloc) . (2)

Substitution of Eqs. (1) and (2) into corresponding quantum-mechanical
formulae [4] yields for the resonant transmission coefficients, Tres, and for
the amplitudes of resonances, Ares:

Tres(d) =
4

[exp(2d/lloc) + exp(−2d/lloc)]2
, (3)

|Ares(d)|2 = 8exp(L/lloc − 1− 2d/lloc)
[exp(2d/lloc) + exp(−2d/lloc)]2

. (4)

Eq. (3) shows that the resonant transmission coefficient does not depend on
the total length of the sample and is governed only by the position of the
area of localization, in contrast to the typical transmission that decays ex-
ponentially with L increasing. Note that resonances with high transmission
T ' 1 arise in the middle of the sample, d ' 0.

If Tres ' 1, then d ' 0, and Eq. (4) gives

|Ares| '
√
2 exp (L/2lloc)À 1 . (5)
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Figure 4: Probability for a mode localized at a given point to provide the
value of the transmission coefficient T , as a function of the dimensionless
coordinate x/L.

It can be shown from Eq. (4) that the maximum of the amplitude is reached
when the transparent part is shifted from the centre of the sample towards
the input at the distance

dmax = −1
4
ln
1

3
lloc ' −0.27lloc . (6)

This shift is independent of the length of the sample.
From the corresponding quantum-mechanical formulae [4] it also follows

that the distance (in k-space) between the resonances (localized modes) is

∆k ∼ 1

L
, (7)

while the typical interval between the resonantly transparent (T ' 1) modes
is equal to

∆ktr ∼ 1

lloc
. (8)

It is easy to see, that ∆k/∆kres ∼ lloc/L ¿ 1, which means that only a
small fraction of resonances provides high transmission through the system.
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This is physically clear and follows from the fact that a resonance with high
transmission occurs when the transparent segment is located in the middle of
the sample (to within the accuracy of lloc), while the resonances with smaller
transmission are observed in any non-symmetrical structure with arbitrary
situated transparent segment. Assuming that the transparent segment can
be found at any point of the sample with equal probability, we infer that
resonances with T ' 1 are encountered L/lloc << 1 times more rarely than
all other ones. It also can be shown [4] that the typical width of resonances
is

δk ∼ 1

lloc
exp

µ
− L
lloc

¶
, (9)

that is to say, it decreases exponentially with the length of the sample.
Note that in the localized regime LÀ lloc À λ. This inequality justifies the
validity of WKB approximation.

Figure 5: The same probability as in Fig. 4 presented by colors. Black line
displays the transmission coefficient as a function of the coordinate of the
point of localization calculated by Eq. (3).

To test the validity of the above-introduced analytical results, Eqs. (2) —
(9), the numerical calculations of the spectrum of resonances, transmission
coefficients, and spatial intensity distributions at resonant frequencies have
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been performed for more than 104 resonances. In the calculations we have
considered samples with maximal number of layers N = 1000, and it was
assumed that the refractive indices and sizes of the layers are independent
random variables uniformly distributed in the ranges n = 1 ± 0.25 and
d = 0.15 ± 0.05 µm respectively. The wavelength varied in the interval
0.5µm ≤ λ ≤ 1.5µm. The localization length has been computed through
the transmission coefficient as lloc = −2L < lnT >−1 . Note that, being a
self-averaging quantity [5], l−1loc slightly fluctuates from sample to sample, and
can be estimated from the transmission coefficient at a typical realization.

Depicted in Fig. 4 is the probability that a mode localized at a given
point provides transmission coefficient T (dimensionless coordinate x/L is
used). As is seen from the picture, the probability of high transitivity (T '
1) has maximum for modes that are localized in the center of the random
sample. As the location of an effective cavity shifts from the center, the
corresponding transmission coefficient decreases, in agreement with Eq. (3).
To make the comparison with the analytical results more convenient, the
same (as in Fig. 4) probability density distribution is presented in Fig. 5
as a two-dimensional picture where different grayscale colors correspond to
different probabilities. Black line displays the transmission coefficient at
eigen frequencies calculated by Eq. (3) as a function of the coordinate of
the corresponding point of localization. Note that shifted to the exit peaks
of the field are not shown in Fig. 5.

The L-dependence of the eigen mode spacing and average half-width of
the resonances retrieved from the numerical experiments fit well Eqs. (7),
(8), (9). Average normalized field amplitude of localized modes (pumping
rate of an effective resonant cavity) numerically calculated as a function of
the coordinate of the cavity is well consistent with Eq. 4, and it shows
that the effective cavities providing highest pumping rate are shifted from
the center towards the input in accordance with Eq. (6). Interestingly
enough, the seemingly rough analogy based on only one fitting parameter
(localization length) performs surprisingly well. Indeed, not only the shift
is independent on the total length and proportional to lloc as predicted by
Eq. (6), but also the coefficient in Eq. (6) coincides with that obtained in
numerical simulations to within the accuracy 10%. We have also verified
that the maximal peak amplitudes exponentially increase with the length of
a sample and by the order of magnitude agree with the value given by Eq.
(5).

To conclude, the resonant transmission through a disordered 1D system
occurs due to the existence of a transparent (for a given resonant frequency)
segment inside the system with the size of order of the localization length.
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The mode structure of the sample, the transmission coefficient, and the
intensity distribution at resonant frequencies depend on the positions of
the segment. These dependencies are very robust, insensitive to the fine
structure of the system, and therefore can be described by corresponding
formulas for an effective regular potential profile. The fitting parameters
are the total length and the localization length, which is a self-averaging
quantity, it can be found, for example, from the transmission coefficient
at typical (non-resonant) realizations. This feature enables to estimate the
position of a resonant cavity by measuring the transmission coefficient at a
general and at the corresponding resonant frequencies. From the first data
the localization length can be obtained, the second one, Tres, is used to
find the asymmetry parameter d (i.e. the coordinate of the effective cavity)
from Eq. (3). Then Eq. (4) gives estimation for the pumped intensity.
Therefore, although locally for 1D photons there is no analog to the quantum
mechanical tunnelling (the effective energy of 1D photons is always higher
than the corresponding potential barrier), macroscopically (on scales larger
than the localization length) the problem of the propagation of light through
a disordered 1D system can be reformulated in terms of an effective potential
profile.
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