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Abstract

We study mathematically the Abrikosov [JETP Lett. 32, 1174
(1957)] modelization of superconductors, which uses the Ginzburg-Lan-
dau phenomenological theory. We first prove the qualitative shape of
the phase diagram, which is found in the physical literature. We then
study in detail the special case, when the critical Ginzburg Landau pa-
rameter k is equal to 1/

√
2. This allows us to prove that the critical

magnetic field Hc1(k) is strictly decreasing at k = 1/
√
2.

PACS: 01.30.Cc, 02.30.Jr, 74.25.Dw

1 Introduction

In 1950 V. Ginzburg and L. Landau [1] have proposed a model describing
the various states of a superconducting material. They have introduced a
functional depending on a wave function φ and a magnetic potential vector
A, whose local minima describe the properties of the material. In this
model |φ|2 represents the local density of superconducting electrons [2 - 5].
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Abrikosov [6] has found a particular solution to the Ginzburg-Landau model,
which predicts a periodic structure for the zeros of φ, which was subsequently
observed in experiments. His model depends on two positive parameters k
and Hext, called Ginzburg-Landau parameter and external magnetic field,
respectively. It also assumed that:

1. The superconductor is infinite, homogeneous and isotropic.

2. The magnetic field Hext = (0, 0,Hext) is constant.

3. The energy functional F (φ,A) has a Ginzburg-Landau form and de-
pends on the Ginzburg-Landau parameter k.

4. The pairs (φ,A) considered are gauge invariant along the z-axis and
also along a lattice of R2.

5. The lattice has a fixed shape and there is one quantum flux per its
unit cell.

After change of variable, as described in Section 2, we obtain the follow-
ing formulation of the problem:

We define L as a lattice of R2 with fundamental domain Ω of area 1
and define the vector bundle E1 over R2/L as the vector bundle, whose C∞
sections are described by

C∞(E1) =
½
u : R2 → C s.t. ∀(x, y) ∈ R2,∀v = (vx, vy) ∈ L,

u((x, y) + v) = eiπ(vxy−vyx)u(x, y)

¾
.

The vector bundle E1 is non-trivial; this implies that any section u ∈
C∞(E1) has at least one zero in R2/L.

The potential vector a belongs to the space

{a ∈ H1
loc(R2;R2) such that div a = 0, a is L-periodic and

Z
Ω
a = 0}.

We denote by A the space of all pairs (u,a) with u being a H1
loc section of

E1 and a belonging to the above space.
Denote Hint as the internal magnetic field and Ek,Hint the functional

defined over A by

Ek,Hint(u,a) =
R
Ω
µ
2ki∇u+ (A0 + a)uk2 + 1

4(1− |u|2)2 + µ2k2

2 | curl a|2
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with µ = Hint
2πk and A0 = π

 −y
x

. We then define the energy of the

superconductor as

Ek,Hext(Hint, u,a) = Ek,Hint(u,a) +
1

2
(Hint −Hext)2.

The term 1
2(Hint−Hext)2 is a simple magnetic energy, while the term Ek,Hint

is the internal energy of the superconductor. The energy Ek,Hext is then
defined as the minimum of Ek,Hext over all magnetic fields Hint and pairs
(u,a) ∈ A. Also we denote mE(k,Hint) as the infimum of Ek,Hint over all
pairs (u,a) ∈ A.

For u = 0, a = 0 and Hint = Hext one obtains the energy EN = 1/4,
which is the energy of the so called normal state. In the limiting case
Hint = 0, one obtains (see [7] or [8]) the energy EP = H2

ext/2, which is the
energy of the pure state. This leads us to introduce three sets in R∗+ ×R∗+:

N = {(k,Hext) ∈ R∗+ ×R∗+ s.t. Ek,Hext = EN} ,
P = {(k,Hext) ∈ R∗+ ×R∗+ s.t. Ek,Hext = EP} ,
M = {(k,Hext) ∈ R∗+ ×R∗+ s.t. Ek,Hext < inf(EP , EN )} .

The set M is the complementary of P ∪N in R∗+ × R∗+; if (k,Hext) ∈M,
then the superconductor is said to be in a mixed state.

Using this simple modelization we were able (see [7] and [8]) to prove
following monotonicity theorem.

Theorem 1 (i) If (k,Hext) ∈ P, k0 ≤ k and H 0
ext ≤ Hext then (k0,H 0

ext) ∈
P.

(ii) If (k,Hext) ∈ N , k0 ≥ k and H 0
ext ≥ Hext then (k0, k

0
kH

0
ext) ∈ N .

The existence of such a Theorem is possible only because the system is in-
variant by homotheties (see, for example, [9] for the case of a superconductor
restricted to a domain D of R2).

From this theorem we derived the existence of two functions k 7→ Hc1(k)
and k 7→ Hc2(k) such that

N = {(k,Hext), s.t. Hext ≥ Hc2(k)},
P = {(k,Hext), s.t. Hext ≤ Hc1(k)},
M = {(k,Hext), s.t. Hc1(k) < Hext < Hc2(k)} .

Using this modelization, we obtained in [8] the qualitative form of the phase
diagram depicted in Fig. 1, which is described in Section 4.
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Figure 1: Phase diagram in Abrikosov modelization

This phase diagram is made of three curves:

(i) (boundary normal-pure) Hext = Hc1(k) = Hc2(k) = 1/
p
(2) with k ≤

1/
p
(2),

(ii) (boundary normal-mixed) Hext = Hc2(k) = k with k ≥ 1/
p
(2),

(iii) (boundary pure-mixed) Hext = Hc1(k) with k ≥ 1/
p
(2).

The exact expression of curve (iii) is unknown. These three curves meet
at the triple point k = Hext = 1/

p
(2). A key point of the proof is that the

case k = 1/
p
(2) is exactly solvable thanks to the Bochner-Kodaira-Nakano

formula explained in Section 3. Using a more advanced analysis of the case
k = 1/

p
(2) in Section 5, we prove in Section 6 the following Theorem:

Theorem 2 (i) There exist δ > 0 and S > 0 such that for all h in [0, δ],
we have

−h ≤ Hc1( 1√
2
+ h)− 1√

2
≤ −Sh .

(ii) The critical magnetic field Hc1(k) is strictly decreasing at k = 1/
p
(2).
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2 The change of variable

In this Section, we recall the original formulation of the problem by V. Ginz-
burg and L. Landau in [1] and how it is related to our formulation. They
proposed the following expression for the density of energy in superconduc-
tors

1

2
kik−1∇φ+Aφk2 + 1

4
(1− |φ|2)2 + 1

2
(curl A−Hext)2.

This expression belongs to L1loc(R3) if (φ,A) is in the Sobolev space

H1
loc(R3;C)×H1

loc(R3;R3).

It is invariant under the gauge transformation (φ0,A0) = (φeikg,A +∇g)
with g ∈ H2

loc(R2); this property is shared by other physically significant
quantities such as the density of superconducting electrons |φ|2, the magnetic
field B = curl A and the current vector of superconducting electrons

Re[φ(ik−1∇φ+Aφ)].

We assumed that the problem is invariant under translation along the
z-axis. This means that we consider pairs (φ,A), which satisfy: for every
h ∈ R, the pair (φ,A)(x1, x2, x3 + h) is gauge equivalent to the pair (φ,A).

In fact, as proved in [7] p. 17, we can assume that the pairs (φ,A)
considered are independent of x3 and satisfy Ax3 = 0. So, we can reduce
the problem to a 2-dimensional one.

Let us take L as a 2-dimensional lattice of R2 with fundamental domain
Ω of area 1. We consider the dilated lattice: Lλ =

√
λL with fundamental

domain Ωλ =
√
λΩ. Following Abrikosov, we choose λ in R+ and restrict

the analysis to pairs (φ,A), which are gauge periodic with respect to Lλ [6].
This means that for all v ∈ Lλ, there exists g

v ∈ H2
loc(R2) such that

φ(z + v) = eikg
v(z)φ(z) and A(z + v) = A(z) +∇gv(z) .

Consequently, all the considered physical quantities are Lλ-periodic. We
denote by |Ωλ| the area of Ωλ, which is actually equal to λ.

A classic consequence (see [7, 10]) of gauge periodicity is that there exists
d ∈ Z that satisfies the relation

2πd = k

Z
Ωλ

curl A .

27



We will then, according to Abrikosov, fix the quantization d per unit cell
equal to 1.

The Ginzburg-Landau functional is obtained by integration of the local
density over the fundamental domain Ωλ and division by |Ωλ|. This gives:
F (φ,A) = 1

|Ωλ|
R
Ωλ

1
2kik−1∇φ+Aφk2 + 1

4(1− |φ|2)2 + 1
2(curl A−Hext)2,

which should be understood as a mean energy.
We denote by Hint =

1
|Ωλ|

R
Ωλ
curl A the mean internal magnetic field

induced by A. The quantization relation is then rewritten as 2π = kλHint.
It is also a classical result (see [10, 11] or [7], p. 21-29) that we can

associate to the pair (φ,A), another pair (φ0,A0), with the same Ginzburg-
Landau energy but satisfying the following relation

(i) A0 = Hint
2π A0 +P with P Lλ-periodic, div P = 0,

R
Ωλ
P = 0,

(ii) φ0(z+ v) = eikgv(z)φ0(z) with gv(x, y) = Hint
2 (vxy− vyx) for all v ∈ Lλ.

This reduction is rather complicated and is performed by a suitable gauge
transform and a translation in x, y. The relation relating φ0(z + v) to φ0(z)
actually defines the sections of a complex line bundle over the torus R2/L;
the result obtained above is therefore a classification result.

With this expression one gets

1

|Ωλ|
Z
Ωλ

1

2
(curl A−Hext)2 = 1

|Ωλ|
Z
Ωλ

1

2
(curl P)2 +

1

2
(Hint −Hext)2.

This leads to the simple expression F (φ,A) = F int(φ,P) + 1
2(Hint −Hext)2

with

F int(φ,P) = 1
λ

R
Ωλ

1
2kik−1∇φ+Aφk2 + 1

4(1− |φ|2)2 + 1
2(curl P)

2.

The functional F int is called internal energy and depends only on Hint, k, φ
and P.

The quantities Hint, k and λ are related by the quantization relation
2π = kλHint, which makes the analysis of F

int cumbersome. So, we reduce
the complexity of the computation by the following change of variables and
functions: u(x) = φ(x

q
2π
kHint

) ,

a(x) =
q

2πk
Hint
[A− Hint

2π A0](x
q

2π
kHint

) =
q

2πk
Hint
A(x

q
2π
kHint

)−A0(x) .
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We then obtain the formulation given in the introduction since the pair
(u,a) so defined belongs to A and verifies Ek,Hint(u,a) = F int(φ,P).

3 The functional Ek,Hint

Let us now analyze the functional Ek,Hint by assuming here that k and Hint
are fixed.

Ek,Hint is defined over A since (u,a) of class H1 guarantees local integra-
bility of the density, while the compactness of the torus R2/L guarantees its
integrability.

In fact, the variational theory of the functional Ek,Hint is easy (see [7])
since the torus R2/L is compact and the non-linear partial differential equa-
tions obtained for the critical points are elliptic; the vector bundle adds
only technical difficulties (see [12]). More precisely one can prove succes-
sively that:

1. Coerciveness: for every C ∈ R there is a C 0 > 0 such thatEk,Hint(u,a) <
C implies kukH1 + kakH1 ≤ C 0.

2. Lower semicontinuity: If (un,an) ∈ A converges weakly to (u,a) ∈ A,
then Ek,Hint(u,a) ≤ limnEk,Hint(un,an).

3. Minimum: The functional Ek,Hint attains its minimum on at least one
pair (u,a) ∈ A.

4. Ginzburg-Landau equations: The minimizing pairs satisfy the following
equation½

µ[i∇+A0 + a]2u = (1− |u|2)u
∆a = 1

k2
Re[u(i∇u+ (A0 + a)u)]

5. Regularity : The pairs (u,a) ∈ A verifying the Ginzburg-Landau equa-
tions are in fact of class C∞.

6. Maximum principle: The pairs (u,a) ∈ A verifying the Ginzburg-
Landau equations satisfy |u| ≤ 1.

We now explain the Bochner-Kodaira-Nakano formula for the functional
Ek,Hint (see [13 - 15] for related formulas and results). This classical formula
is also called Bogomol’nyi formula, Weitzenbock formula, Lichnerowicz for-
mula (see [16]) according to different scientific schools.
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We set C = A0 + a; we get curl C = 2π + curl a and define

A+,Hint(u,a) =

Z
Ω

µ

2
|D+u|2 + 1

4
|µ curl C− (1− |u|2)|2,

where µ = Hint
2πk and D+ =

∂
∂x + i

∂
∂y + Cy − iCx.

Theorem 3 (Bochner-Kodaira-Nakano)
For all (u,a) ∈ A, we have :

E 1√
2
,Hint

(u,a) = µπ − (µπ)2 +A+,Hint(u,a).

Proof. We perform computations with smooth functions and then extend
by density. After expansion, simplification and regrouping one obtains

{A+,Hint −E 1√
2
,Hint

}(u,a) = 1
2

R
Ω divW− µ curl C

+ µ2

4

R
Ω | curl C|2 − | curl a|2

with

W =

µ
u(i∂u∂y + Cyu)

−u(i∂u∂x + Cxu)
¶
.

The vector field W being L-periodic, the integral of its divergence over Ω
is 0. The formula is then obtained by replacing curl C by 2π + curl a and
using

R
Ω curl a = 0.

The magnetic Schrödinger operator is defined as H = [i∇ + A0]2; its
spectrum, called Landau levels, is recalled in next theorem.

Theorem 4 (i) The operator H admits a self-adjoint extension over L2(E1),
also denoted by H, whose domain is H2(E1).

(ii) It can be expressed as H = L∗+L+ + 2π with [L+, L∗+] = 4π and L+ =
2∂z + πz.

(iii) Its spectrum is discrete, sp(H) = 2π + 4πN, and every eigenvalue is
simple.

(iv) The eigenvector u0 associated to λ = 2π satisfies L+(u0) = 0 and has
a unique simple zero in Ω denoted by z0.

Proof. (i) and the discreteness of the spectrum follow from the fact that H
is an elliptic pseudo-differential operator of order 2 defined over the vector
bundle of a compact manifold (see [12]).
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The formulae H = L∗+L+ + 2π and [L+, L∗+] = 4π are proved by first
computing with smooth functions and then extending by density.

If we proved that the equation L+(u) = 0 has a unique solution u0 up
to a scalar, then by the harmonic oscillator formalism we would get (iii).

In fact, if one writes, u0(z) = e
−|z|2 π

2 s(z), then s(z) is analytic. Further-
more, without loss of generality, we can assume that L is generated by the
vectors v1 = (u, 0) and v2 = (w, r) with ru = 1. Then, after using gauge
periodicity conditions, one finds the following expression for u0:

u0(x, y) = e
iπxy

X
n∈Z

e−π(y+nu)
2
eπn

2iwu+2πnuix .

This expression is a theta function; it is known that such functions have a
unique simple zero in Ω (see [17]). Another method of proof is the use of
Rouché Theorem as done in [7].

Theorem 5 If k ≥ 1√
2
and Hint ≥ k, then mE(k,Hint) = 1

4 . Furthermore,

the minimum is met only by the pair (0, 0).

Proof. We use following expansion of the functional Ek,Hint :

Ek,Hint(u,a) ≥ E 1√
2
,Hint

(u,a)

≥ (µπ)− (µπ)2 + RΩ µ
2 |D+u|2 + 1

4 |2µπ − 1 + µ curl a+ |u|2|2
≥ (µπ)− (µπ)2 + (2µπ−1)2

4 + 1
4

R
Ω 2(2µπ − 1)(µ curl a+ |u|2)

+1
4

R
Ω |µ curl a+ |u|2|2

≥ 1
4 +

2µπ−1
2

R
Ω |u|2 .

Then using the hypothesis 2µπ − 1 = Hint/k − 1 ≥ 0, we get mE(k,Hint) ≥
1/4 positivity in terms in the above equation.

Now assume that Ek,Hint(u,a) = 1/4; in fact, the last computation gives
us the following equalities:½

0 = (2µπ − 1) RΩ |u|2, 0 =
R
Ω | curl a+ |u|2|2,

0 = (k2 − 1
2)
R
Ω | curl a|2, 0 =

R
Ω |D+u|2.

The second equality gives us curl a+|u|2 = 0, which integrated over Ω yieldsZ
Ω
|u|2 = −

Z
Ω
curl a = 0

and then u = 0.
Now, using the equation div a = 0, one obtains the equality curl∗ curl a =

∆a = 0. The potential vector a is L periodic; so, it has to be constant. Now,
the property

R
Ω a = 0 yields a = 0.
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4 The phase diagram

Let us first consider the special case when k = Hext = 1/
√
2. We have the

following Lemma:

Lemma 6 One has
(i) E 1√

2
, 1√

2
(Hint, u,a) =

1
4 +A+,Hint(u,a),

(ii) E 1√
2
, 1√

2
= 1

4 ,

(iii) ( 1√
2
, 1√

2
) ∈ P ∩N .

Proof. (i) is in fact a rewriting of the Bochner-Kodaira-Nakano formula; it
yields (ii) by positivity of A+,Hint , while (iii) is obtained by remarking that
EN = 1

4 =
1
2(

1√
2
)2 = EP .

Theorem 7 (Type I superconductors) If k ≤ 1√
2
, then:

(i) If Hext ≤ 1√
2
, then Ek,Hext = EP and (k,Hext) ∈ P,

(ii) If Hext ≥ 1√
2
, then Ek,Hext = EN and (k,Hext) ∈ N .

Proof. Lemma 6 combined with Theorem 1.(i) gives the result in the case
Hext ≤ 1√

2
.

In particular, if k ≤ 1√
2
we have (k, 1√

2
) ∈ P and so, Ek, 1√

2
= EP =

1
2(

1√
2
)2 = 1

4 = EN ; therefore Theorem 1.(ii) gives the conclusion in case

Hext ≥ 1√
2
.

Theorem 8 (Type II superconductors) If Hext ≥ k ≥ 1√
2
, then:

(i) If Hext ≥ k, then Ek,Hext = EN and (k,Hext) ∈ N ,
(ii) If Hext < k, then (k,Hext) /∈ N .

Proof. Lemma 6 combined with Theorem 1.(ii) gives (i).
By setting Hint = Hext, u = αu0, a = 0 and doing a development of

order 2 around the pair (0, 0), one obtains

Ek,Hext(Hext,αu0, 0) = Ek,Hext(αu0, 0) =
1

4
+
1

2
(
Hext
k
− 1)α2 + o(α2) .

Since k > Hext = Hint, one obtains for α small Ek,Hext(Hext,αu0, 0) <
1
4 ; so,

the energy will be lower than 1/4, i.e. (k,Hext) /∈ N .
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5 Analysis of the case k = 1/
√
2

In this section we will find all pairs (u,a) verifying A+,Hint(u,a), thus getting
the value ofmE(1/

√
2,Hint). A similar study is done in [18] for a rectangular

problem. In the book [14], the case considered is of u defined over R2, while
in paper [19] the problem is considered over a Riemann surface. Also, in
[14] it is proved that all critical points of the Ginzburg-Landau functional
are solution of the Bogomol’nyi equations, but their proof does not apply to
our case.

Papers [20, 21, 15] are devoted to the existence theorem concerning the
Kazdan-Warner equation. They get as a byproduct existence Theorems for
the self-dual equations.

Theorem 9 (Kazdan-Warner, see [20]). If h is a positive function, h 6= 0,
and C∞(R2/L). If A > 0 then the equation

−∆f + efh = A

has a unique solution f in C∞(R2/L).

We define (
uHint = u0e

fHint

aHint
= (

∂fHint
∂y ,−∂fHint

∂x ),

with fHint being the unique solution of 1 − 2µπ = |u0|2e2f − µ∆ f and
µ = Hint

π
√
2
.

Let us introduce first the following family of sections of E1:

uh(x, y) = e
iπ(hyx−hxy)u0(z − h) .

Recall that z0 is the zero of u0 in R2/L; the section uh verifies the following
easy properties½

uh ∈ C∞(E1), L+(uh) = 2πhuh,
uh(z) = 0 if and only if z ∈ z0 + h+ L .

Furthermore, for any h ∈ R2, v ∈ L, there exists α ∈ R such that

uh+v(z) = e
iαe2iπ(vyx−vxy)uh(z) .
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Theorem 10 We assume Hint ≤ 1√
2
.

(i) If (u,a) ∈ A satisfies A+,Hint(u,a) = 0, then there exists c ∈ R such
that (u,a) = (eicuHint ,aHint

).
(ii) The pair (uHint ,aHint

) satisfies to( R
Ω(1− |uHint |2)2 = µ2[(2π)2 +

R
Ω | curl aHint

|2]R
Ω
µ
2ki∇uHint + (A0 + a)uHintk2 + µ2

2 | curl aHint |2 = (µπ)− 2(µπ)2 .

Proof. Let (u,a) ∈ A be a pair satisfying A+,Hint(u,a) = 0, it then verifies
the following Bogomol’nyi equations

D+u = L+u+ (ay − iax)u = 0 and 2µπ + µ curl a = 1− |u|2

and, by Theorem 3, minimizes the functional E 1√
2
,Hint

. Therefore, as shown

in Section 3, it satisfies the Ginzburg-Landau equations and hence, it is C∞.
Since the vector bundle E1 is non trivial the section u possesses at least

one zero in R2/L, which we write as zh = z0 + h.
The zero-set of the function u defined on R2 contains zh + L, while the

zero-set of uh is exactly zh+L; so, one defines on R2− (zh+L) the function

f =
u

uh
.

Since both u and uh are sections of the vector bundle E1, the function f is
L-periodic. The equation D+u = 0 is rewritten on R2 − (zh + L) as:

0 = 2(∂zf)uh + fD+uh = 2(∂zf)uh + [2πhf + (ay − iax)f ]uh ,
Since uh is not zero on R2 − (zh + L) we obtain:

∂zf = fw with w =
1

2
[(−ay − 2πhx) + i(ax − 2πhy)] .

Note that the function w is defined on R2, also it is C∞ and L-periodic.
We now want to extend f to R2: it is a classical result of complex analysis

that the equation ∂zk = w has a C
∞ solution k on R2.

The function g = fe−k is defined on R2− (zh+L), satisfies ∂zg = 0 and
is therefore analytic. If m ∈ zh +L then u = O(z −m), since u is C∞. The
complex m is a simple zero of uh, consequently u

−1
h = O(|z − m|−1) and

f = O(1) at m.
The function g stays bounded around m and is analytic outside m. By

a classical result of complex analysis, we get that g can be extended to m in
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a complex analytic function. The function g is extended to C and therefore,
f too.

The function g is analytic. Therefore its zero set is discrete. There exists
a translation Ω0 of Ω such that the boundary ∂Ω0 of Ω0 does not meet any
zero of g.

By the Rouché theorem, the number n of zeroes of g in Ω0 is equal to :

n =
1

2πi

Z
∂Ω0

∂zg

g
dz =

1

2πi

Z
∂Ω0

∂zf

f
dz − 1

2πi

Z
∂Ω0

∂zkdz =
−1
2πi

Z
∂Ω0

∂zkdz.

The integral of ∂zf
f over ∂Ω0 is zero, since f is L-periodic.

Now using Stokes theorem, we get :

n = −1
2πi

R
∂Ω0 ∂zkdz =

−1
2πi

R
Ω0 d(∂zkdz) =

−1
2πi

R
Ω0 ∂z∂zkdz ∧ dz

= −1
2πi

R
Ω0 ∂z∂zkdz ∧ dz = −1

2πi

R
Ω0 ∂zwdz ∧ dz.

The function w is L-periodic. Consequently the function ∂zw is a L-periodic
function, which has integral zero over Ω0; so, n = 0.

Since f = gek, the function f has no zero over R2. Since R2 is simply
connected there exists a complex valued C∞ function ψ such that f = eψ.

The function ψ is not L-periodic, but since the function f is L-periodic
and C∞ there exist two integers n1, n2 such that

ψ(z + v1) = ψ(z) + 2πin1 and ψ(z + v2) = ψ(z) + 2πin2 .

We pose v0 = n1v2 − n2v1, the function ψ2(z) = ψ(z) − 2πidet(z, v0) is
L-periodic, and we have :

u(z) = f(z)uh(z) = e
ψ2(z)+2πi[xv

0
y−yv0x]uh(z) = eψ2(z)−iαuh+v0(z)

with α ∈ R. We set h3 = h+ v0, ψ3 = ψ2 − iα, and we rewrite u as:

u(z) = eψ3(z)uh3(z)

with ψ3 a L-periodic C∞ function. The Bogomol’nyi equations are rewritten
as ½ ∂ψ3

∂z = 1
2 [(−ay − πh3,x) + i(ax − πh3,y)] ,

0 = 2µπ − 1 + |uh3 |2e2Re ψ3 + µ curl a.

35



The real and imaginary parts of the first equation give us the expression of
the potential vector:(

ax = πh3,y +
∂Re ψ3

∂y + ∂ Im ψ3
∂x ,

ay = −πh3,x − ∂Re ψ3
∂x + ∂ Im ψ3

∂y .

The equation div a = 0 is then rewritten as ∆ Im ψ3 = 0. Thus Im ψ3 is
constant, since it is L-periodic. We now write ψ3 = f+ ic with f a real C∞,
L-periodic function; so, one has

ax = πh3,y +
∂f

∂y
and ay = −πh3,x − ∂f

∂x
.

The functions a, ∂f
∂x , and

∂f
∂y have zero integral over Ω. So, we have h3 = 0

and the zero of u in Ω is z0.

One then obtains curl a = −∆ f and the following equation for f :

0 = 2µπ − 1 + |u0|2e2f − µ∆ f .

So, one gets f = fHint ; now the above equation can be rewritten as:

−µ curl aHint
= 2µπ − 1 + |uHint |2 .

It yields
R
Ω |uHint |2 = 1−2µπ and

R
Ω(1−|uHint |2)2 = µ2[(2π)2+

R
Ω | curl aHint

|2],
the second equation of (ii) is then obtained by Theorem 3.

Corollary 11 . For every positive Hint one has:

mE(
1√
2
,Hint) =

(
Hint√
2
− (Hint√

2
)2 if Hint ≤ 1√

2
,

1
4 if Hint ≥ 1√

2
.

Proof. By Theorem 3, one has the inequality mE(
1√
2
,Hint) ≥ Hint√

2
− (Hint√

2
)2,

since A+,Hint ≥ 0. This lower bound is attained by the pair (uHint ,aHint).
Theorem 5 gives the result if Hint ≥ 1√

2
.

Remark 1 It can be shown that the pair (uHint ,aHint
) depends continuously

on Hint and vanish for Hint =
1√
2
, i.e. it is a bifurcated state (see [7]).

36



6 Local study

We define

Hk(u,a) = 1
4πk

R
Ω ki∇u+ (A0 + a)uk2

+
q
[12 +

1
2(2π)2

R
Ω | curl a|2][

R
Ω(1− |u|2)2] .

Theorem 12 If k ≥ 1√
2
then Hc1(k) = inf(u,a)∈AHk(u,a). If this infimum

is attained on a pair, say, (u0,a0) ∈ A, then one has

Ek,Hc1(k)(Hint, u
0,a0) =

H2
c1(k)

2
with Hint =

1

2

vuut R
Ω(1− |u0|2)2

1
2 +

1
2(2π)2

R
Ω | curl a0|2

.

Proof. By Section 1, we have that (k,Hext) ∈ P is equivalent to:

Ek,Hint(u,a) +
1

2
(Hint −Hext)2 ≥ H

2
ext

2
,

which after simplification is equivalent to(
Hint[

1
2 +

1
2(2π)2

R
Ω | curl a|2] + 1

4Hint

R
Ω(1− |u|2)2

+ 1
4πk

R
Ω ki∇u+ (A0 + a)uk2 ≥ Hext.

The minimum over Hint > 0 of the above expression is attained for

Hint =
1

2

vuut R
Ω(1− |u|2)2

1
2 +

1
2(2π)2

R
Ω | curl a|2

which yields the Theorem.

The above expression of Hc1(k) allows us to obtain Hc1(k) = O( ln kk )
(see [7]). From Theorem 7, one has Hc1(

1√
2
) = 1√

2
.

Theorem 13 The set of pairs (u,a) ∈ A verifying H 1√
2
(u,a) = 1√

2
is

(eicuHint ,aHint
)

with c ∈ R and 0 < Hint ≤ 1√
2
.
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Proof. If (u,a) ∈ A satisfies H 1√
2
(u,a) = 1√

2
, then one has

E 1√
2
, 1√

2
(Hint, u,a) =

1

4
and Hint =

1

2

vuut R
Ω(1− |u|2)2

1
2 +

1
2(2π)2

R
Ω | curl a|2

.

By Lemma 6.(i), first equation simplifies to A+,Hint(u,a) = 0, and then using
Theorem 10 to (u,a) = (eicuHint ,aHint

).
When the expression of (u,a) is substituted into the second equation,

one obtains

4H2
int =

R
Ω(1− |uHint |2)2

1
2 +

1
2(2π)2

R
Ω | curl aHint

|2 .

By Theorem 10.(ii), this relation is always satisfied.

Theorem 14 (i) There exist δ > 0 and S > 0 such that for all h in [0, δ],
we have

−h ≤ Hc1( 1√
2
+ h)− 1√

2
≤ −Sh .

(ii) The critical magnetic field Hc1(k) is strictly decreasing at k =
1√
2
.

Proof. The expression of Hc1(k) obtained in Theorem 12 gives us that the
function k 7→ kHc1(k) is increasing; this yields the lower bound.

Now we will prove the upper bound by using the (uHint ,aHint
) as quasi-

modes. If k = 1√
2
+ h then we will have

Hk(uHint ,aHint
) =

1√
2
− h

2π

Z
Ω
ki∇uHint + (A0 + aHint

)uHintk2 + o(h) .

We get the following values of S using Bochner-Kodaira-Nakano

S = sup0<Hint< 1√
2

1
2π

R
Ω ki∇uHint + (A0 + aHint

)uHintk2
= sup0<Hint< 1√

2
[1− Hint

1√
2

− Hint
2π2

√
2

R
Ω | curl aHint

|2]

follows from Theorem 10(ii).
One may want now to know the exact value of S at 1/

p
(2). Using

numerical simulations we obtain that the function

χ(Hint) = 1−
√
2Hint − Hint

2π2
√
2

Z
Ω
| curl aHint

|2
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is decreasing and has a limit of approximately 0.78 at Hint = 0 for a square
lattice.
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