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Abstract

A discrete dynamic models of open- and closed-loop DC-DC PWM
buck- and boost-converters are discussed. The discrete model, as com-
pared with a continuous one, has the following advantages: it pro-
vides more exact voltage and current values in view of their pulsating
character, and is more adequate for the analysis of converters with
digital control devices. The discrete model is obtained by s- and
z-transformations of the basic equations set of the converter over a
switching cycle. The theoretical results are confirmed by SPICE and
Simulink simulation results and agree with the experimental results on
a laboratory prototype.

1 Introduction

The continuous model is the most widely used in the analysis of dynamic
and static modes of DC-DC PWM converters. The beginning of appli-
cation of such model ascends to [1], with later applications extended to
complex enough structures, for example in [2], and also to converters with
soft switching [3]. The continuous model allows one to permit average values
in dynamic and static modes, that is sufficient for a certain class of problems.
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This approach, however, suffers from a number of the following main defects:

1. The continuous model does not give information about the change of
the voltage and current instant values, as well as about their ripple.

2. Representation of DC-DC PWM converters with the help of the con-
tinuous model is badly combined with modern means of digital control
and with the capability of construction of high-speed automatic control
systems on their basis.

3. The usually used continuous linearized model generally cannot give
understanding of such important modes as the period doubling and of
the subsequent forming of chaotic modes [4].

As will be shown below, the proposed dynamic model completely elim-
inates two first defects. And though pulse linearized model is used, it, due
to keeping its discrete character, can examine the unstable modes as the
regimes with the consecutive period doubling.

DC-DC PWM converters form the electrical circuits with variable struc-
ture, each of which is described on a certain time interval by a set of dif-
ferential equations. To get the complete solution of such circuit, the results
of solution on separate intervals should be matched to get the general dif-
ferential equation [5]. The characteristic feature of this paper is that the
pulse model is obtained by s- and z-transformations of the complete initial
equation set without its solution on separate intervals and without subse-
quent consecutive fitting of results and getting the final differential equation.
Such a way is not only simpler, but also keeps a large clearness and is based
only on some general characteristics of the circuit - such as the pulse and
transitive characteristics.

The paper has the following structure. In Section 2 the general dynamic
pulse model of the buck converter and its interpretation for an opened loop
and a closed loop system is given. In Section 3 the construction of such
model for boost converter in different modes is shown. In the last Section 4
the experimental test of the proposed theory is given.

2 Dynamic impulse model of buck converter

Fig. 1a shows the buck-converter, filter and load. The equation system
describing this converter, can be written in the matrix form as
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dx

dt
= A1x+B1;

dy

dt
= A2y +B2;

d = f(vC),

(1)

where matrices

xT = [x1, x2, ..., xn] ; (x1 = i0, xn = vo);

yT = [y1, y2, ..., yn] ; (y1 = kovo, yn = vC)

and
BT
1 = [Vind, 0, ..., 0] ; B

T
1 = [Vref , 0, ..., 0]

The equations are obtained using the notations of Fig. 2b, where d is
the switching function of a buck converter. Let us write down the equation
system (1) for the increments of all unknown parameters shown at Fig. 2:

dx̂

dt
= A1x̂+ B̂1;

dŷ

dt
= A2ŷ + B̂2.

(2)

For linearizing the system (2), we will consider small enough values of
increments. In this case, the increments bd can be replaced by the pulse
function acting at the moment of the increments bd in view of reduction of
its duration to a small enough value. The amplitude of pulse function should
be equal to the duration of the increment bd. This transformation is shown
in Fig. 2f. Using this transformation one gets for the matrix bBT

1 :
a) for the open loop system,

B̂T
1 =

"
Vin

nX
k=0

δ(t− kTs)
V̂C

Vramp
Ts, 0, ..., 0

#
, (3)

b) for the closed loop system, v̂C = f(t),

B̂T
1 =

"
Vin

nX
k=0

δ(t− kTs)
v̂C(kTs)

Vramp
TsF, 0, ..., 0

#
, (4)

where F is the ripple factor.
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Figure 1: DC-DC PWM converters in a closed loop system. a) the buck
converter, b) the boost converter.

The whole equation set has the form:

d̂ = f(v̂C). (5)

The sense and meaning of the factor F will be explained in Section 2.
After the Laplace transform of (3), (4), one gets:

[Is−A1] x̂(s) = B̂1(s);

x̂(s) = [Is−A1]
−1 B̂1(s),

(6)
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where I is a unitary matrix.
The solution of system (6) relative to the parameters bx1 = bi0 and bxn = bvo

gives:

î0(s) = kin

n−1X
k=0

¯̄̄h
Is−A1; B̂1(s)1

i¯̄̄
|[Is−A1]| ; v̂o(s) = kin

n−1X
k=0

¯̄̄h
Is−A1; B̂1(s)n

i¯̄̄
|[Is−A1]| ,

(7)
After conversion of these expressions one gets

îo(s) = kin
nP

k=0

Xio(s)e
−kTs v̂C(kTs);

v̂o(s) = kin
nP

k=0

XVo(s)e
−kTs v̂C(kTs),

(8)

where Xi0(s) and Xvo(s) are the Laplace transforms of the pulse charac-
teristics of the general buck converter circuit at the closed switch condition
relative to the input current i and output voltage vo, respectively.

Going over the time domain

(Xio(s)e
−kTs → Xio(t− kTs) and Xvo(s)e

−kTs → Xvo(t− kTs)),

in discrete time points t = nTs and after z-transformation, one obtains z-
images of required parameters:

ı̂o(z) = kinv̂C(z) ·X∗
io
(z);

v̂o(z) = kinv̂C(z) ·X∗
Vo
(z).

(9)

2.1 Open loop system

The transfer characteristics an "output current - control" and "output volt-
age - control" for the open loop system are:

Gid(z) = kinX
∗
io
(z);

Gvd(z) = kinX
∗
Vo
(z).

(10a)

The transfer characteristics "output current - input voltage" and "output
voltage - input voltage" for the open loop system are:

Giv(z) = kcX
∗
io(z);

Gvv(z) = kcX
∗
Vo
(z),

(10b)
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Figure 2: Main theoretical waveforms of the buck converter circuit.
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where

kC =
VCFTs
Vramp

.

The adequacy of use of a pulse sequence function for the description
of transients is checked up with the help of simulation programs Matlab-
Simulink for the model constructed for the following parameters of buck
converter: Vin = 24V, Lo = 100uH, Co = 5uF, Ro = 2.9Ohm, Rin =
0.1Ohm, f = 50kHz, Vramp = 5V, D = 0.5. In Fig. 3 the circuit of model
corresponding to (8) is shown. For its construction it is necessary to know
only Laplace transforms of the pulse characteristics

Xio(s) =
1

Lo

s+ 2∆1
s2 + 2∆s+ ω2o

,XVo(s) =
1

LoCo

1

s2 + 2∆s+ ω2o
.

where

∆ =
1

2RoCo
+

Rin

2Lo
;∆1 =

1

2RoCo
; ω2o = (1 +

Rin

Ro
)
1

LoCo
.

Figure 3: Simulation Matlab-Simulink s-model for the buck converter in an
open loop system.

The curves of the output voltage and current response to a jump of the
input voltage from zero to Vin are given at Fig. 4a for the model of Fig. 3
(s-transformations) and according to (10b) (z-transformation), where

X∗
io(z) =

ωo − 2∆2
ωLo

z2 sinφ+ ze−∆̄(sin(ω̄ − φ)− sin ω̄)
z2 − 2ze−∆̄ cos ω̄ + e−2∆̄

,
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Figure 4: Simulation results of a step-up transient for the buck converter in
an open loop system. a) Matlab-Simulink s-model, b) PSPICE simulation.
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and

∆2 = ∆−∆1, ∆̄ = ∆ · Ts, ω =
p
ω2o −∆2, ω̄ = ω · Ts, tgφ =

ω

∆
.

The results of simulation of the same transient processes in PSPICE are
given at Fig. 4b.

2.2 Closed loop system

v̂C(s) =

µ
v̂ref (s)

s
− kov̂o(s)

¶
·G(s). (11)

Going over time domain and taking into account the value of v̂o(s) from
(8), one gets

v̂C(t) = G1(t)v̂ref − kokin

n−1X
k=0

v̂C(kTs) ·G2(t− kTs), (12)

where
G1(t)÷G(s)

1

s
; G2(t)÷G(s)XVo(s).

Passing to z-transform, one gets for discrete moments t = nTs

v̂C(z) = G∗1(z)V̂ref − kokinv̂C(z)G
∗
2(z), (13a)

from which

v̂C(z) = V̂ref
G∗1(z)

1 + kokinG∗2(z)
(13b)

and

v̂o(z) = V̂ref
kinG

∗
1(z)X

∗
Vo
(z)

1 + kokinG∗2(z)
. (13c)

Expressions (13b) and (13c) for the closed loop system in z-plane can be
obtained directly: X∗

Vo
(z) is the transfer function of the closed loop system,

G∗1(z) is the transfer function of the regulator. So:

v̂C(z) = V̂ref
G∗1(z)

1 + kokinG∗1(z)X∗
Vo
(z)

and

v̂o(z) = V̂ref
kinG

∗
1(z)X

∗
Vo
(z)

1 + kokinG∗1(z)X∗
Vo
(z)

.

(13d)
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Figure 5: Simulation Matlab-Simulink s-model (a) and z-model (b) for the
buck converter in a closed loop system.

Factor F, in (4), reflects the character of pulsations of the output voltage
in the closed loop system. The meaning of F and its definition are explained
in Fig. 2a. It can be seen that V̂C = ∆t · tanα1 −∆t · tanα2, from which

∆t =
V̂C

tanα1 − tanα2 (14a)

and, futher, taking into account that tanα1 = 1
Ts
and also that tanα2 =h

dVC
dt

i
nT−0

, one gets
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∆t =
V̂C

1
TS
−
h
dVC
dt

i
nT−0

=
V̂CTs

1− Ts

h
dVC
dt

i
nT−0

= FTsV̂C , (14b)

where

F =
1

1− Ts

h
dVC
dt

i
nT−0

. (14c)

As it can be seen, F ≤ 1, i. e., the total gain factor is reduced. Factor
F is determined for different loads, in particular for the Lo − Ro- load one
gets

F−1 = 1 +
Ts
To
· e
−Ts
To

γo − e−
Ts
To

1− e−
Ts
To

(15)

where To =
Lo

Ro
.

Accepting G∗1(z) = kr
Ts

z − 1 (G
∗
1(z) is a discrete integrator, kr = 1/Tc),

one gets

v̂C(z) =
z · V̂ref
z − 1 ·

kr·Ts
z−1

1 + kokinkr
Ts
z−1X

∗
Vo
(z)

. (16a)

Now, based on (16a)

v̂o(z) =
z · V̂ref
z − 1 ·

kr·Ts
z−1 kinX

∗
Vo
(z)

1 + kokinkr
Ts
z−1X

∗
Vo
(z)

. (16b)

The Matlab-Simulink model of the closed loop system is shown in Fig. 5a.
The model is obtained based on the model Fig. 3 and takes into account

(8), (13b), (13c) for the buck converter from Section 2 and G2(s) =
1

sTC
for the regulator, where TC = 15µs and ko = 0.25, Vref = 3V. The transient
curves calculated in this model are shown in Fig. 6a. The model of the
same closed loop system in a z-plane is given in Fig. 5b, and corresponding
transient curves - in Fig. 6a. The results of PSPICE-modeling are given for
comparison in Fig. 6b.

From expressions (13c) and (13d) one can get the characteristic equation
of the closed loop system
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Figure 6: Simulation results of a step-up transient process for the buck
converter in a closed loop system. a) Matlab-Simulink s- and z-models, b)
PSPICE simulation.
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1 + kokinG
∗
2(z) = 0,

1 + kokinG
∗
1(z)X

∗
Vo
(z) = 0.

(17)

On the basis of these equations one can get the stability condition
of the system: the system is stable if |z|<1. Root locus for F (z,K) =
1 +KkokinG

∗
1(z)X

∗
Vo
(z) for the buck converter from Section 2 and for the

regulator G2(s) = 1
sTC
, where TC = 36µs and ko = 0.25, Vref = 3V , are

given in Fig. 7. The analysis shows that stability of the system is provided
for K ≤ 2.

Figure 7: Locus of the roots for z-models of the buck converter.
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3 Dynamic impulse model of boost converter

The scheme of the boost converter with the closed loop system of regulation
is presented in Fig. 1b. Taking into account notations of Fig. 1b and Fig.
8a,b, the system of equations for the open loop system can be written as

Lin
diin
dt

+ vod1 = Vin;

Co
dvo
dt
+

vo
Ro

= iind1.

(18)

3.1 Open loop system (D=const)

For changes of only input voltage, the equations for increments are:

Lin
dı̂in
dt

+ v̂od1 = V̂in;

Co
dv̂o
dt
+

v̂o
Ro

= ı̂ind1.

(19)

Replacing the increments by the equivalent pulse functions, one gets

Lin
dı̂in
dt

= V̂inTs
nP

k=0

δ(t− kTs)−D1Ts
nP

k=0

v̂∗o.kδ(t− kTs −DTs);

Co
dv̂o
dt
+ v̂o = D1Ts

nP
k=0

ı̂∗in.kδ(t− kTs −DTs),

(20)

where îin.k, v̂o.k are the instantaneous values of the current îin and voltage v̂o
at the moments t = kTs, and î∗in.k and v̂

∗
o.k are the values of these parameters

at the moments t = kTs +DTs.
Caring out the same sequence of operations as in the case of the buck-

converter, i. e., producing the Laplace transformation and replacing it by
the z−transformation, one gets

ı̂in(z) +
D1Ts
Lin

z

z − 1 v̂
∗
o(z) = V̂in

Ts
Lin

z2

(z − 1)2 ;

−D1Ts
Co

ze−∆D

z − e−∆
ı̂∗in(z) + v̂o(z) = 0,

(21)
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Figure 8: Main theoretical waveforms of the boost converter circuit.
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where ∆ =
Ts

RoCo
.

Let us express the values of parameters marked by the symbol (∗) with
the aid of the parameters îin.k(z) and v̂o.k(z):

ı̂∗in(z) = ı̂in(z) + V̂in(z)
DTs
Lin

;

v̂∗o(z) = v̂o(z)e
−∆D.

(22)

This results in the following set of equations:

ı̂in(z) + aV (z)v̂o(z) = V̂in
Ts
Lin

z2

(z − 1)2 ;

−ai(z)̂ıin(z) + v̂o(z) = V̂in
DTs
Lin

ai(z)
z

z − 1 ,
(23)

where

aV (z) =
D1Ts
Lin

ze−∆D

z − 1 ; ai(z) =
D1Ts
Co

ze−∆D

z − e−∆
.

Based on (23), one gets for the boost converter

Giv(z) =
Ts
Lin

b2iz
2 + b1iz

a2z2 + a1z + a0
;

Gvv(z) =
D1T

2
s e
−∆D

LinCo

b2V z
2 + b1V z

a2z2 + a1z + a0
,

(24)

where

a0 = e−∆; a1 = −(1 + e−∆); a2 = 1 +
D2
1T

2
s

LinCo
e−2∆D;

b2i = 1; b1i = −(e−∆ + D2
1T

2
s

LinCo
De−2∆D);

b2v = (1 +D)
D1T

2
s

LinCo
e−∆D; b1v = −D1T

2
s

LinCo
De−∆D.

Fig. 9 shows the schemes of the Simulink-models, which are based on
the direct simulation (20) and on the z-transformation (24). Fig. 10a shows
the results of simulation of the starting process of the boost-converter with
the following parameters:

Vin = 24V; Lin = 400µH; Co = 20µF; Ro = 10Ω; fs = 50kHz; D = 0.5.
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Figure 9: Simulation Matlab-Simulink s- and z-models for the boost con-
verter in an open loop system.

3.2 Open loop system (Vin=const)

Let us consider construction of a pulse model of the boost-converter at
change of its duty cycle. Fig. 8c,d shows the graphics of current iin and
voltage vo for the change of the duty cycle from its initial value (marked by
index “0”) to its final value for a general change of duty cycle D̂. Based on
the notations of Fig. 8c,d , we can obtain the following set of equations:

Lin
dı̂in
dt

+ (d1v̂o − d10Voo) = 0;

Co
dv̂o
dt
+

v̂o
Ro

= (d1iin − d 10Iino).

(25a)
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Figure 10: Simulation results of a step-up transient process for the boost
converter in an open loop system (D=const). a) Matlab-Simulink s- and
z-models, b) PSPICE simulation.
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After transition to pulse functions and substitution of the right-hand
term values we have:

Lin
dı̂in
dt = VooTs

nP
k=0

D̂kδ(t− kTs −DTs)−D1Ts
nP

k=0

v̂∗o.kδ(t− kTs −DTs);

Co
dv̂o
dt + v̂o = D1Ts

nP
k=0

ı̂∗in.kδ(t− kTs −DTs)− IinoTs
nP

k=0

D̂kδ(t− kTs −DTs)

(25b)
Now, based on Fig. 8c,d, we can write down the increments of all values

and after that perform the s- and z-transformations. As a result, we obtain
the following set of equations:

ı̂in(z) + aV (z)v̂o(z) = D̂
VooTs
Lin

µ
z

z − 1
¶2
;

−ai(z)̂ıin(z) + v̂o(z) = D̂(−Iino
D1

+
VinTs
Lin

)ai(z)
z

z − 1 ,
(26)

from which

Gid(z) =
VooTs
Lin

b2iDz
2 + b1iDz

a2z2 + a1z + a0
;

Gvd(z) =
VooTs
Lin

b2vDz
2 + b1vDz

a2z2 + a1z + a0
,

(27)

where

b2iD = (1− g
D2
1T

2
S

LinCo
e−2∆D); b1iD = −e−∆; g = Vin

Voo
− IinoLin

VooD1TS
;

and

b2vD =
D1TS
Co

(1 + g)e−∆D; b1vD = −D1TS
Co

ge−∆D.

The Simulink simulation results for a pulse model are presented in Fig. 11.
The values of parameters are the same as in the previous case for D̂ = 0.1.

3.3 Pulse model of the boost converter in CCM

In the current control mode, the voltage and current changes in the boost
converter are determined by the given change of current from its initial level
ICo to the level IC (Fig. 8e ). This results in a change in D̂:

D̂ = (ÎC − ı̂in.k) cotα, (28)

where ÎC = IC − ICo; cotα =
Lin

VinTs
.
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Figure 11: Simulation results of a transient process for the boost converter in
an open loop system (Vin=const). a) Matlab-Simulink z-model, b) PSPICE
simulation.
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In general, the equation set in the z-region is similar to (26), i. e.,

ı̂in(z) + aV (z)v̂
(
oz) = VooD̂C

Ts
Lin

z2

(z − 1)2 ;

v̂o(z) = −ICoD̂C
Ts
Co

ze−∆D

z − e−∆
+

D1Ts
Co

ÎC
ze−∆D

z − e−∆
.

(29a)

Taking into account (28), one gets

−cV (z)̂ıin(z) + aV (z)v̂o(z) = ÎC
Voo
Vin

z2

(z − 1)2 ;

−ci(z)̂ıin(z) + v̂o(z) = ÎCai(z)
z

z − 1 − ÎCci(z)
z

z − 1 ,
(29b)

where

cV (z) = 1 +
z

z − 1
Voo
Vin
; ci(z) =

Lin

Co

ICo
Vin

ze−∆D

z − e−∆
.

Based on the last set of equations in the continuous current mode, one
gets

Gic(z) =
d2iz

2 + d1iz

c2z2 + c1z + c0
;

Gvc(z) =
d2vz + d2ve

−∆D

c2z2 + c1z + c0
,

(30)

where

c2 = 1 +
D1IcoTs
VinCo

+
Voo
Vin
; c1 = −Voo

Vin
e−∆ +

D1IcoTs
VinCo

e−2∆; c0 = e−∆;

d2i =
Voo
Vin
−D1e

−2∆D

µ
D1T

2
s

1

LinCo
− TsIco

CoVin

¶
; d1i = −Voo

Vin
;

d2v =
D1Ts
Co

(
Voo
Vin
−1)e−∆D+

LinIco
CoVin

e−∆D; d1v =
D1Ts
Co

e−∆D−LinIco
CoVin

e−∆D.

Fig. 12 shows the simulation results of the boost-converter in Simulink
(Fig. 12,a) and PSPICE (Fig. 12,b) for the same values of parameters as in
the previous cases for Ico = 5A; Îc = 1A.
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Figure 12: Simulation results of a transient process in CCM for the boost
converter. a) Matlab-Simulink z-model, b) PSPICE simulation.
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3.4 Closed loop system

In the closed loop system, the change of the duty cycle D̂k in the k-th period
in (25b) is determined as

D̂k =
v̂cF

Vramp
,

where v̂c is obtained according to (11). The simultaneous changes in the
input voltage Vin and duty cycle D̂k are taken into account by the system
of equations (20) or (25b) where the right-hand part of a new system will
be equal to the sum of terms in the right hand parts of these equations not
containing variables v̂∗o.k and ı̂∗in.k.

Fig. 13a shows the results of simulation of the starting process of the
boost-converter with zero initial conditions in the closed loop system in
Matlab-Simulink. The circuit parameters correspond to those mentioned
above, the feedback factor ko = 0.1, and the time constant of the integral

regulator G(s) =
1

sTC
is TC = 1250µs. Calculations were performed in

the s-model obtained on the basis of the equations (20) and (25b) for joint
variations of the input and control signals. The results of PSPICE-modeling
are given for comparison in Fig. 13b.

4 Experimental results

For checking the results of the theoretical analysis in Sections 2 and 3, a
prototype of the circuit was built for: Vin = 24V; Lo = 100µH; Co =
5µF; Ro = 2.9Ω; f = 50kHz, transistor of the IRF-540 type for the switch
and diodes MBR.

The transient process at switching on the converter for a constant voltage
in the open loop system is shown in Fig. 14a. The same process in the
closed loop system with an integrated regulator (C = 0.036µF, R = 1kΩ)
and gain ko = 0.25 is shown in Fig. 14b. Fig. 14c shows the switch voltage
in the process of period doubling at a transition of the buck-converter in
an unstable mode (C = 0.01µF) . The experimental results and theoretical
analysis are in good agreement.

5 Conclusions

The discrete model in comparison with the continuous one provides more
precise values of voltages and currents, especially at small inductances and
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Figure 13: Simulation results of a step-up transient process for the boost
converter in a closed loop system. a) Matlab-Simulink s-model, b) PSPICE
simulation.
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Figure 14: Experimental start-up output voltage for the buck converter. a)
open loop system, b) closed loop system, c) closed loop system, unstable
mode.
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capacitances. The pulse model is more adequate at the analysis of the con-
verter with digital control devices. The linearized continuous model essen-
tially cannot give understanding of such important modes as period doubling
and subsequent forming of chaotic modes. The pulse model keeps discrete
character of the converter operation, therefore its transition to an unstable
mode with appearing of period doubling are more logical for such a model.
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