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Abstract

This paper presents computationally simple and accurate expert
system for fault identification of HVDC Converter and Control of
HVDC system. Adaptive Neuro-Fuzzy Inference System (ANFIS) is
applied and discussed in detail. Instead of using separate fault identi-
fier for each valve, an integrated fault identifier is developed which is
effective for complete bridge Converter. Fault identifiers are tested for
HVDC with strong and weak ac sides. Fault identification methods
are applicable in both inversion and rectification mode. ANFIS based
current control is also developed for a HVDC system. Several digital
simulation results are presented to validate the procedure outlined in
the paper. ANFIS based control can be easily combined with the fault
identifier to form integrated system, which can improve dynamic re-
sponse of HVDC systems.
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1 Introduction

In recent years artificial intelligence based on Neural network, Fuzzy sys-
tem, Adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm,
etc. have met growing interest in many industrial applications.

Fault diagnosis of systems is a major subject of expert systems applica-
tions. The past two decades have revealed great advances in the application
of artificial intelligence to power systems [1,2].

A trend that is growing in visibility relates to the use of fuzzy logic in
combination with neuro-computing and genetic algorithms. More generally,
fuzzy logic, neuro-computing, and genetic algorithms may be viewed as the
principal constituents of what might be called soft computing. Unlike the
traditional hard computing, soft computing is aimed at an accommodation
with the pervasive imprecision of the real world. Number of papers are
available that deal with the application of artificial intelligence in the area
of power systems. In [3], a hybrid scheme using Fourier linear combiner and
fuzzy expert system for the classification of transient disturbance waveform
in power system is presented. An integrated fuzzy expert system is presented
in [4] to diagnose different faults in a regional transmission network and
substations. In the recent paper [5], different methods based on Artificial
Neural Network (ANN) to identify various faults that may occur in HVDC
converter, are presented.

An exhaustive survey of application of Neuro and fuzzy systems to the
power system problem can be found in [6].

Wavelet - based fuzzy reasoning approach to the power quality distur-
bance recognition is presented in [7]. In [8] a comparison between propor-
tional and fuzzy controllers for a power converter is proposed.

Modern controls based on Artificial Neural Network, Fuzzy system and
Genetic algorithm are found fast, reliable, can be used for protection against
the line and converter faults and are gaining more interest in the field of
HVDC transmission.

HVDC systems traditionally use PI controllers with fixed gains. Al-
though such controllers have certain disadvantages, they are rugged and
operate satisfactorily for perturbations within a small operating range. On
the other hand, ANN controllers have some specific advantages whereby
the use of ANN controller has been shown to introduce flexibility and fault
tolerance into the performance of the controllers.

ANN has attracted a great deal of attention because of their pattern
recognition capabilities and their ability to handle noisy data. However, its
ability to perform well is greatly influenced by the weight adaptation algo-
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rithm and the amount of noise in the data. The neural network architecture
suffers from a large number of training cycles and computational burden.
Neural network has the shortcoming of implicit knowledge representation,
whereas fuzzy logic systems are subjective and heuristic.

Fuzzy inference systems and neural networks are complementary tech-
nologies in the design of adaptive intelligence system. Artificial Neural Net-
work (ANN) learns from scratch by adjusting the interconnections between
layers. Fuzzy Inference System (FIS) is a popular computing framework
based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy rea-
soning. Design of a simple fuzzy logic controller for HVDC transmission
line is presented in [9] for fast stabilization of transient oscillations. Un-
like both adaptive and variable structure controllers, which require, at least
functionally, an accurate model of the system dynamics, the fuzzy controller
does not require a mathematical model of the system to estimate the control
input under disturbance conditions.

A neuro-fuzzy system is simply a fuzzy inference system trained by a
neural network- learning algorithm. The learning mechanism fine-tunes the
underlying fuzzy inference system.

Fuzzy system faces difficulties like a lack of completeness of the rule
base and a lack of definite criteria for selection of the shape of membership
functions, their degree of overlapping, and the levels of data quantization.
Some of these problems can be solved if the neural technique is used for
fuzzy reasoning.

The integrated neuro-fuzzy system combines advantages of both ANN
and FIS. Application of both technologies are categorized into following four
cases:

1. NN’s used to automate the task of designing and fine tuning the mem-
bership functions of fuzzy systems.

2. Both fuzzy inference and neural network learning capabilities acting
separately.

3. NN’s work as correcting mechanisms for fuzzy systems.

4. NN’s customizes the standard system according to each users prefer-
ences and individual needs.

The integrated neuro-fuzzy system combines advantages of ANN and
FIS. Some of the major works in the area of neuro-fuzzy system are GARIC,
FALCON, ANFIS, EfuNN, dmEEuNN, etc.
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The HVDC system traditionally uses PI controllers to control the DC
current thereby keeping the power (current) order at the required level.
Although these controllers undoubtedly are robust and are operating satis-
factorly for many years, they are prone to changes in system parameters,
delays or other non-linearities in the system and suffer from some limita-
tions. This paper describes fault identification and protection of a HVDC
converter using ANFIS based fault identifier (ANFLBI). A fuzzy logic based
current controller (ANFLBC) for the fast and flexible control of an HVDC
transmission link is also designed. Unlike other controllers, ANFIS controller
does not require a mathematical model of the system to estimate control in-
put under disturbance conditions. ANFLBC can be easily combined with
ANFLBI to form integrated system. Power system reliability improves when
HVDC converter faults are detected and eliminated before they deteriorate
to a severe state.

The paper is organized as follows. HVDC system under study is defined
in Section 2. Section 3 gives introduction on ANFIS system. Application
of ANFIS for HVDC control is given in Section 4. Section 5 presents use
of ANFIS for fault identification. Simulation and test result is discussed in
Section 6. Conclusions are given in Section 7.

Figure 1: HVDC system - schematic diagram.
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2 HVDC system model

The HVDC system used here as a test system is a 12-pulse, 1000 MW (500
kV-2kA) 50/60 Hz HVDC transmission system (S. Casoria; Hydro-Quebec
(IREQ). A 1000 MW (500 kV, 2kA) DC interconnection is used to transmit
power from the 500 kV, 5000 mVA, 60 Hz network to 345 kV, 10000 mVA, 50
Hz network. The converters are interconnected through a 300 km distributed
parameter line and smoothing reactor of 0.5 H. The reactive power required
by the converters is provided by a set of filters (Capacitor bank plus 11th,
13th and high pass filters; total 600 MVAR on each side). Fig. 1 shows
a typical HVDC system using 6 pulse Graetz’s Bridge configuration. Two
6-pulse bridges in series constitute a 12-pulse converter.

3 Adaptive neuro-fuzzy inference system (ANFIS)

Fuzzy systems are generally used in cases when it is impossible or too dif-
ficult to define crisp rules that would describe the considered process or
system, which is being controlled by a fuzzy control system. Thus, one of
the advantages of fuzzy systems is that they allow to describe fuzzy rules,
which fit the description of real-world processes to a greater extent.

Another advantage of fuzzy systems is their interpretability; it means
that it is possible to explain why a particular value appeared at the out-
put of a fuzzy system. In turn, some of the main disadvantages of fuzzy
systems are that expert input or instructions are needed in order to define
fuzzy rules, and that the process of tuning of the fuzzy system parameters
(e.g., parameters of the membership functions) often requires a relatively
long time, especially if there is a high number of fuzzy rules in the system.
Both these disadvantages are related to the fact that it is not possible to
train fuzzy systems. A diametrically opposite situation can be observed in
the field of neural networks. User can train neural networks, but it is ex-
tremely difficult to use a priori knowledge about the considered system and
it is almost impossible to explain the behaviour of the neural system in a
particular situation.

In order to compensate the disadvantages of one system with the advan-
tages of another system, several researchers tried to combine fuzzy systems
with neural networks. A hybrid system named ANFIS (Adaptive-Network-
Based Fuzzy Inference System or Adaptive Neuro-Fuzzy Inference System)
has been proposed in [10].
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ANFIS is the fuzzy-logic based paradigm that grasps the learning abili-
ties of ANN to enhance the intelligent system’s performance using a priori
knowledge.

Using a given input/output data set, ANFIS constructs a fuzzy inference
system (FIS) whose membership function parameters are tuned (adjusted)
using either a backpropagation algorithm alone, or in combination with a
least squares type of method. This allows your fuzzy systems to learn from
the data they are modeling.

These techniques provide a method for the fuzzy modeling procedure to
learn information about a data set, in order to compute the membership
function parameters that best allow the associated fuzzy inference system
to track the given input/output data. This learning method works similarly
to that of neural networks.

Figure 2: ANFIS structure.

678



Fig. 2 shows the basic structure of the ANFIS algorithm for a first order
Sugeno-style fuzzy system. It is worth noting that the Layer-1 consists of
membership functions described by the generalized bell function

µ(X) = (1 + ((X − c)/a)2b)−1 (1)

where a, b and c are adaptable parameters. Layer-2 implements the fuzzy
AND operator, while Layer-3 acts to scale the firing strengths. The output
of the Layer-4 is comprised of a linear combination of the inputs multiplied
by the normalized firing strength w :

Y = w(pX + r) (2)

where p and r are adaptable parameters. Layer-5 is a simple summation of
the outputs of Layer-4. The adjustment of modifiable parameters is a two-
step process. First, information is propagated forward in the network until
Layer-4 where the parameters are identified by a least-squares estimator.
Then the parameters in Layer-2 are modified using gradient descent. The
only user specified information is the number of membership functions in
the universe of discourse for each input and output as training information.

ANFIS uses back propagation learning to learn the parameters related
to membership functions and least mean square estimation to determine the
consequent parameters. Every step in the learning procedure includes two
parts.

The input patterns are propagated, and the optimal consequent parame-
ters are estimated by an iterative least mean square procedure. The premise
parameters are assumed fixed for the current cycle through the training set.

The pattern is propagated again, and in this epoch, back propagation
is used to modify the premise parameters while the consequent parameters
remain fixed.

To use ANFIS for classification problem, the designer needs to perform
the following steps:

1. Design a Sugeno FIS appropriate for the classification problem.

2. Hands optimize the FIS, given actual input classification data.

3. Set up training and testing matrices. The training and testing matrices
will be composed of inputs and the desired classification corresponding
to those inputs.

4. Run the ANFIS algorithm on the training data.

5. Test the results using the testing data.
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ANFIS has a network-type structure similar to that of a neural network
which maps inputs through input membership functions and associated pa-
rameters, and then through output membership functions and associated
parameters to outputs, can be used to interpret the input/output map.

The parameters associated with the membership functions will change
through the learning process. The computation of these parameters (or their
adjustment) is facilitated by a gradient vector, which provides a measure of
how well the fuzzy inference system is modeling the input/output data for a
given set of parameters. Once the gradient vector is obtained, any of several
optimization routines could be applied to adjust parameters that will reduce
some error measure (usually defined by the sum of the squared differences
between actual and desired response).

ANFIS uses either back propagation or a combination of least squares
estimation and back propagation for membership function parameter esti-
mation. The next section describes application of ANFIS for HVDC control.

4 ANFIS based HVDC control

The rule-based linear fuzzy logic controller can be used to achieve the desired
transient performance of the HVDC link connected to a weak ac system.
Unlike other controller, the fuzzy controller does not require a mathematical
model of the system to estimate control input under disturbance conditions.

Figure 3: FLC block diagram.
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The input of the constant current simple type fuzzy controller (FLC) is
the DC current error and the rate of change of the error and output is the
change in alpha order (∆α). The linguistic variables used as two inputs are
the error Ie and the rate of change of error Iep as shown in Fig. 3.

A rule base with only four rules can be designed. As the rule base
contains very few rules and membership functions are not optimized, the
response of this simple type of fuzzy controller is not satisfactory which is
evident from the response depicted in Fig. 4.

Figure 4: Response of a simple fuzzy controller: a) DC line voltage; b) DC
current Idc and Idref .

Extending of the rule base and proper tuning of membership functions
can enhance performance of the fuzzy controller. But its performance re-
lies on selection of proper membership functions and fine-tuning. To avoid
these problems, in this paper ANFIS based current controller is presented
which preserves all the advantages of fuzzy systems and uses neural net-
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work at the front end to optimize performance of the overall system. To
train ANFIS based control, training data is obtained from HVDC system,
which is equipped with a conventional PI based constant current controller
(see Fig. 5). ANFIS is trained using 70% of the data while 30% is used for
testing and validation.

Figure 5: Off-line trained ANFIS control.

Response of the designed ANFIS current controller is shown in Fig. 6 for
variation in DC reference current (Idref). Performance of HVDC system im-
proves if faults within converter are detected and fault development control
initiates some corrective action. The next section deals with use of ANFIS
for fault identification.

5 ANFIS based fault identification

As the data in HVDC system are highly uncertain and the power disturbance
monitoring is a pattern classification problem, therefore ANFIS based expert
system is adopted for designing fault identifier.

The existing method available for converter fault identification may give
a very quick indication of the converter fault with the assumption that
the overlap angle µ is limited up to 60 degrees. But the accuracy of the
identifier totally relies on the proper selection of the delay time, i.e. the
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delay time exceeding the expected overlap angle µ may give false indication
of fire-through and false indication of commutation failure if the delay angle
is not sufficient. To overcome this problem, fault identifiers are designed
using artificial neural network to detect commutation failure, firethrough,
and other faults within the converter bridge [5], in which three different
methods are presented to detect various faults in HVDC converter using the
artificial neural network and comparison is made between different methods.
But in these methods, one identifier per valve is required, i.e. six identifies
are required for a Graetz bridge converter.

To eliminate this problem, an integrated type of fault identifier is pro-
posed in this paper, which is based on an adaptive neuro-fuzzy inference
system.

Figure 6: Performance of ANFIS control for change in Idref : a) DC line
voltage; b) DC current Idc and Idref .
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The fault identification is based on the fact that every operation of the
converter valve (normal or abnormal) is associated with a set of conduction
pattern of the valves.

An integrated fault identifier with 12 inputs and one output is proposed
and will be utilised for a complete bridge converter. The structure of this
fault identifier is depicted in Fig. 7.

Figure 7: Integrated fault identifier.

Here Pi= firing pulse of ith valve

Ci = current through ith valve.

CFi = commutation failure of ith valve

ATi = arc-through / firethrough of ith valve

i = 1 to 6

Ci signal is derived from a valve, and Pi (gate firing pulses) are obtained
from the converter control circuit.

The signature that is used to recognize commutation failure of ith valve
is given by

C(i−2) ∧ P(i+1). (3)
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Figure 8: ANFIS — CF6 response: a) DC line voltage; b) DC current Id; c)
output from ANFIS-CF.

Thus the conduction of valve number 4 in pulse zone P1 is recognized as
a commutation failure of valve 6 (CF6).

It is important to note that integrated identifier also can be designed as
a simple fuzzy system but for the present problem it is not easy to select
number of membership functions and fine-tune them. Instead, this paper
uses ANFIS approach to the design of system overcoming various problems
related to simple fuzzy systems.

The proposed method is highly reliable and gives unambiguous indication
of converter faults.

To design the proposed ANFIS based CF identifier (ANFIS-CF), input-
output training data are constructed using the signature stated earlier and
some of the data are reutilized as test data.

It is found that this ANFIS model contains 18 rules. Training time and
learning epochs for the ANFIS are definitely less than those required for
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designing similar identifier using pure neural network.
Fig. 8 (a,b,c) shows voltage at DC line, DC current Id, and output from

ANFIS-CF when the commutation failure of valve 6 occurs in the system at
t = 0.528 sec.

Figure 9: System response for 40 % dip in Ph. A: a) DC line voltage; b)
DC current Id; c) output from ANFIS-CF.

Fig. 9 shows performance of the identifier when the HVDC system is
subjected to 1 phase, 40 dip in phase A during time 0.5-0.6 seconds. The
fault identifier indicates a commutation failure of valves 6 and 3. In a similar
fashion, the integrated fault identifier (ANFIS-AT) is also designed to detect
fire through of valve. This identifier detects fire through of Vi valve if Vi

conducts in P(i−1)A zone. Here subscript A indicates the first 60-degree part
of P(i−1) Pulse zone. Thus the criterion used is

Ci ∧ P(i−1)A. (4)
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One such identifier will be sufficient to detect firethrough of any valve
within the bridge converter. The response of HVDC system and fault iden-
tifier ANFIS-AT, when the converter is subjected to firethrough of valve 6
is shown in Fig. 10.

Figure 10: (a) Vdcline; (b) Idc; (c) ANFIS-AT output.

6 Simulation and testing

Several digital simulations were carried out to validate different methods
proposed in this paper for successful detection of converter faults and to
demonstrate performance of ANFIS based current controller. The detailed
HVDC system was developed in Simulink with MATLAB as computational
engine. ANFIS based fault identifier and current controller were developed
using Matlab fuzzy logic toolbox. Simulation results were also validated on
CIGRE HVDC Benchmarking model.
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7 Conclusions

Performance of FL based controller and ANFIS based current controller for
HVDC system is compared. Simulation show the superior performance of
ANFIS based current controller. Instead of using separate fault identifier
for each valve, an integrated fault identifier is developed which is effective
for the complete bridge converter. Fault identifier, which is developed, is
able to provide discrete and unambiguous indication of converter faults such
as commutation failure and arcthrough/firethrough of a valve within the
converter. Fault identifiers are tested for HVDC with strong and weak
ac side. Fault identification methods are applicable in both inversion and
rectification mode.

Several digital simulation results are presented to verify the fault detec-
tion procedure outlined in the paper. ANFIS based control can be easily
combined with the ANFIS based fault identifier to form integrated system,
which can improve dynamic response of the HVDC system.
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