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Abstract

A recent model of an internally or externally controlled ideal switch
is described. General nonperiodical switching is considered. No lim-
itations regarding the circuit structure and complexity are imposed.
Application to variety of electronic circuits is demonstrated. Special
attention is paid to electronic power circuits such as switched power
supplies and converters.
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1 Introduction

Power electronic components (transistors, thyristors, and diodes) for con-
venience are often modeled as switches. Instances of such models may be
found in switched capacitor or switched-current networks, switched power
supplies, mixed signal circuits such as A/D converters [1], etc. The ad-
vantage of using ideal switches in circuit simulation is explained in [2]. To
simplify, if nonideal models are used in a SPICE-like simulation, simulation
of the resulting stiff system demands long simulation times. When switches
are modeled as ideal, simulation for the switch transition is performed in one
time instant, rather then as a step transition of voltages and currents. It
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saves simulation time without significant error in the simulation results. It
is our experience that in circuits where switches are predominant elements,
time overheads are reduced by an order of magnitude.

Several approaches have been used for analysis of switched networks.
Externally controlled switches and a restricted set of circuit elements are
used in switched-capacitor (SC) networks [3, 4]. SC networks are a subset of
periodically switched linear networks. Techniques to analyze such problems
are described in [5] and [6]. The method described in [6] deals also with a
restricted set of nonlinear networks, but such methods cannot be used for
the circuits with internally controlled switches, as they appear in switched
power supplies and converters [7].

One group of methods used for the time-domain simulation of internally
controlled switched networks is based on the state variable formulation [8-
10] and [11]. These are, however, difficult to implement in a general-purpose
electronic simulation program. A summary of this class of methods can be
found in [12]. Recently reported additional results [13] suffer, however, the
same deficiencies related to both possibility of implementation in general
purpose simulation program, and restriction to the set of circuit elements.

Algorithms of analysis of linear networks with internally controlled
switches are described in [12] and [14]. The method in [14] enables sim-
ulation of linear systems where inconsistent initial conditions occur after
switching. In networks with internally controlled switches, the Dirac im-
pulses of voltage or current can cause changes of state of other switches
in network. Algorithms that take this into consideration are described in
[12] and [15]. It is shown that nonlinear storage elements (capacitors and
inductors) must be represented by charges and fluxes.

We started our research in this field by recognizing the fact that circuits
with ideal switches, no matter how many of them are present in the circuit,
and no matter what is the structure of the circuit and the nature of the
rest of the elements, are nonlinear per se. Or, in other words: there are no
linear circuits if ideal switches are present. Nonlinear circuits are, in general,
described by nonlinear equations that are unavoidably solved by iterative
procedures. The switch is nonlinear as it can be, so that, the ideal switch
model proposed recently [16, 17] is suitable for the time-domain simulation
of networks containing externally and internally controlled switches. Our
switch model is intended for use with a standard SPICE-like simulator.
Namely, the switch is considered as a circuit element and managed either
during circuit description, or simulator’s code writing, as any other element
(resistor, diode, etc.). The main motivation for this research was the fact
that the current versions of the switch model implemented in SPICE are
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nonideal, with low Ron resistance and high Roff resistance [18]. When
finite values of switched resistance are used, however, the eigenvalues in
the system are extreme, and the simulation demands very long CPU times.
Switch models with energy storage elements [19] can prevent such extreme
eigenvalues and the simulation becomes somewhat faster.

The structure of the paper is as follows. Our nonlinear switch model
is presented in Section 2. Section 3 handles inconsistent initial conditions
and Dirac impulses, and suitability of the model for simulation of nonlin-
ear networks. In Section 4, a switch model with continuous transition of
resistance between zero and infinite values is presented. The paper is con-
cluded with a review of simulation examples demonstrating the versatility
and effectiveness of the model described.

2 Nonlinear ideal switch model

2.1 Limitations of the usual ideal switch model

A closed switch connecting nodes j and k is modeled as a zero-valued voltage
source

vj − vk = 0. (1)

If the switch is open, the model is equivalent to a zero-valued current
source:

i = 0 (2)

where i is the current through the switch flowing from the node j to the node
k, as depicted in Fig. 1a. Having in mind the graphical representation of
(1) and (2) one readily concludes that the ideal switch is a nonlinear circuit
element as it can be. Accordingly, independent of the algorithm applied
for solution of the network equations related to circuits containing ideal
switches, the response evaluation is performed iteratively. We here adopt
the Newthon/Raphson procedure that is applied in most circuit analysis
programs, and our model is expressed in such a way to be easily applicable
in this kind of programs. The rest of the discussion is related to equation
formulation.

Modified nodal analysis (MNA), described in [20-22], is well suited for
automated formulation of the system of equations. For each component,
a model stamp is developed. Since (1) is a voltage equation, and (2) is
a current equation, two different stamps should be defined for the switch
[21, 23]. Fig. 1b depicts the stamp for closed switch, corresponding to (1),
where z is the system matrix index of the variable i. When the switch is
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open, it is simply omitted from the system of equations. However, if we want
to introduce the current i as a variable, to have the same set of variables
as in the case of closed switch, than the stamp given in Fig. 1c may be
used. When implemented, this stamp may be simplified by omitting the
contributions to rows j and k since the current leaving these nodes is zero.

(a)

vj vk i rhs

j 1

k −1
z 1 −1

(b)

vj vk i rhs

j 1

k −1
z 1

(c)

Figure 1: Ideal switch (a) and stamps representing the model of (b) closed
and (c) open ideal switch. The right hand side vector of the system of
equations is denoted as rhs.

It would seem that one could replace one stamp by another when the
switch transition occurs. Unfortunately, this leads to numerical problems
in a SPICE-type program, since the switch transition changes the network
topology, and this is reflected in the change of the structure of the nonzero
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entries in the system matrix. If such models were implemented, a new
reordering and pivoting in the matrix would be necessary after every switch
transition.

2.2 Nonlinear model of a closed switch

Our first concern is to define the switch model that would have the same
structure of nonzero entries for both states [16, 17]. Let us first consider
a closed switch. The problem here is that the zero entry appears on the
main diagonal of the matrix. However, for circuit simulation (1) can be
replaced by

(vj − vk)− ri = −rim (3)

where r is a new model parameter with dimension of resistance. Superscript
m denotes the iteration number, and im denotes the value of the current
obtained in the previous iteration. When convergence is reached, the current
in (m+ 1)th iteration equals that from mth iteration:

i = im (4)

and one obtains the equation for the closed switch (1). We will use the
simple circuit of Fig. 2a to illustrate this procedure. The iterative process
of switch closing is depicted in Fig. 2b in i − v coordinate system. At the
beginning the switch is open - that is at the point B in Fig. 2b. When
convergence is reached, the switch should be closed (point A). If the model
given by (3) is used, transition from B to A is defined by iterative procedure
through the intermediate solutions B0, B00, B000. These points are determined
by the line A−B and another line, representing the switch model equation.
Convergence is faster when lower values or r are used. Nevertheless, too low
value of parameter r could lead to numerical problems. We have found that
the value of 10−5Ω enables fast convergence and is high enough to avoid
numerical problems.

The stamp describing the model is given in Fig. 3a and contains no zero
on the main diagonal.

To visualize the model, we can compare the convergence process with
the time-domain simulation of a linear inductor. If m denotes time instant,
parameter r can be replaced with L/h, where L is "inductance" and h is
"time step". From (3), one would obtain the equation

vj − vk − L

h
i = −L

h
im. (5)
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This is the linear inductor’s companion model, vjk = L(di/dt), where
discretization is performed by the use of backward Euler formula. When
steady-state is reached, the inductor turns out to be a short circuit. We
have transferred this property into the iterative domain, i.e. reaching the
convergence. In other words, closing the switch is modelled by replacing the
switch by a quasi-inductor. The whole transition of the switch is performed
as an iterative process in one time instant.

Figure 2: a) Simple circuit with a switch and b) iterative procedure of switch
closing. The switch current in the mth iteration is im and 1/r is the slope
of the line representing the switch model. c) Iterative procedure of switch
opening. The switch voltage in the mth iteration is vm. 1/R is the slope for
the open switch.
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vj vk i rhs

j 1

k −1
z 1 −1 −r −rim

(a)

vj vk i rhs

j 1

k −1
z 1 −1 −R vmj − vmk

(b)

Figure 3: Stamps implementing the nonlinear model of (a) closed switch
and (b) open switch. The structure of nonzero entries is the same in both
cases, and no zero entries are generated on the main diagonal.

2.3 Nonlinear model of an open switch

For the open switch we introduce a new model

vj − vk −R · i = vmj − vmk (6)

where R is a model parameter with the dimension of resistance. When the
convergence is reached, the voltages from (m + 1)th and mth iteration are
equal

vj = vmj , vk = vmk (7)

and from (6) one obtains (2) which models the open switch.
The iterative procedure of switch opening is again illustrated using the

circuit in Fig. 2a. At the beginning the switch is closed, and the circuit
solution is in position A. The transition from A to B goes trough the points
A0, A00, A000 in Fig. 2c. The convergence will be reached in smaller number of
iterations if R is higher but too high value could lead to numerical problems.
We found the value of 109Ω convenient.

With our choice of r and R, the number of iterations necessary for con-
vergence of nonlinear switched networks is not affected by our switch model
being determined by other nonlinear devices in the network.
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The stamp that corresponds to the model (6) is given in Fig. 3b. The
structure of the nonzero entries in the stamp is the same for both switch
states.

We can use the same analogy to visualize our model. In the time-domain,
the corresponding equation is a linear capacitor model. When the conver-
gence is reached, the current through the quasi-capacitor is zero.

With the model given in Fig. 3 we have obtained switch transitions
that change the network topology but not the structure of nonzero entries
in the sparse matrix. Reordering of the matrix after switch transition is not
necessary. The use of nonlinear switch model requires iteration even if the
rest of the network is linear but the convergence is reached quickly and while
the algorithms for iterative solutions of nonlinear networks are built into any
SPICE type program. When analyzing nonlinear networks, our nonlinear
switch model does not noticeably increase the number of iterations.

3 Inconsistent initial conditions

Inconsistent initial conditions can occur in networks with ideal switches. An
example is given in Fig. 4. If the switch is in position 1, capacitor C1 is
charged to the voltage E, and C2 has zero voltage. When switch transition
occurs from 1 to 2, a Dirac impulse of current appears, and instantaneously
equalizes the voltages.

Figure 4: Circuit with inconsistent initial conditions.

In [12, 14] and [15], the problem of inconsistent initial conditions is re-
solved by a special integration procedure. When our switch model is used,
consistent network state after switch transition can be found as well. Fig. 5
shows the simulation results for the circuit in Fig. 4. The switching period
is 4ms and the capacitor values are C1 = C2 = 100nF. After the switch
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transition from 1 to 2 (t = 2ms), some charge is instantaneously trans-
ferred through the switch, and the total amount of charge in the circuit is
conserved. No special techniques are necessary for finding consistent initial
conditions after the switching.

Figure 5: Circuit with inconsistent initial conditions.

With our model, the switching is not represented just as a replacement
of one network topology by another. The switch transition is modelled
through a number of iterations, where in every iteration both Kirchhoff
laws are satisfied. The values of voltage and current in the previous and new
iteration are always connected by quasi-capacitor or quasi-inductor model.
For that reason, a finite amount of charge is transferred from C1 to C2 in
every iteration and charge conservation is maintained. In the dual problem,
current through the inductor would be instantaneously changed, and our
nonlinear ideal switch model conserves the flux in the network.

As discussed in [12] and [15], the problem of inconsistent initial condi-
tions is not only to conserve the charge and the flux. It is important to
take into account Dirac impulses that can occur at the instant of switching.
The problem will be explained for the ideal buck-boost switching converter
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[19, 24] given in Fig. 6a. The switch S represents the transistor that is ex-
ternally controlled. The diode is represented as an ideal internally controlled
switch. One can model this diode using a control variable p:

D :

½
closed, if p > 0
open, if p < 0

p =

½
i, if D is closed
vj − vk, if D is open.

(8)

Therefore, p is an internal circuit variable and its value is determined in
every iteration.

Figure 6: a) Ideal buck-boost switching converter. b) Equivalent circuit for
S closed and D open. c) Equivalent circuit for S open and D closed.

When switch S is closed and switch D open, the circuit is shown in
Fig. 6b and inductor current iL is linearly increasing. When S is externally
opened, iL has no closed loop and drops instantaneously to zero, and a
Dirac impulse voltage appears on the inductor. It changes the switch control
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variable p to a positive value, andD closes. When this happens, the inductor
current has a closed loop, Fig. 6c, and there is no discontinuity in its value.
There is no impulse of the inductor voltage but the Dirac impulse is needed
to switch the diode D, i.e., to change the value of the control variable p.

A similar condition occurs when S is closed again. If iL has not decayed
to zero, D is still closed and the capacitor is connected to the voltage source
through S and D. A Dirac impulse of current flows through the capacitor,
the switches S and D, and the voltage source. This current impulse flows
in opposite direction through D, and changes the control variable p to a
negative value. This opens diode D at the same time instant as S is closed,
and, as a consequence, the capacitor is not directly connected to the voltage
supply in any time instant.

Figure 7: Simulation results for the buck-boost converter.

Simulation results for the buck-boost converter with our switch model
are presented in Fig. 7. The element values are E = 1V, L = 150µH,
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C = 50µF, and R = 10Ω. The switching period for S is 70µs, and the duty
cycle was 3/7.

To conclude this consideration, one may say that our model takes into
account the Dirac impulse, although no explicit methods are used for that.
With our model, one obtains Dirac impulse with very high number (ampli-
tude) after the first iteration. Since the solution from one iteration is used
to determine the conditions for the next iteration, this Dirac impulse can
change the states of the internally controlled switches in the circuit.

4 Model of the switch with two thresholds

The switch modelled by stamps in Fig. 3 can be externally or internally
controlled. For the internally controlled switch, a control variable (voltage
or current) is needed. In all examples until now, we have assumed that
the control voltage has one threshold value. The switch, however, may
be implemented with two thresholds, Von for closing switch, and Voff for
opening. Such control is presented in [18], where switch is implemented
with finite resistance, Ron for closed switch (Vc > Von) and Roff for the
open (Vc > Voff ). When the control voltage is between the thresholds, the
switch resistance R has continuous transition between Roff and Ron.

In our model, the switch is ideal. The stamp for the closed switch behaves
as Rs = 0 and for the open switch as Rs = ∞. Nevertheless, continuous
transition of the switch resistance between zero and infinite values can be
also modelled. If Vc is between Von and Voff , the following switch model is
used

vj − vk − [R · x− (1− x)] · i = (vmj − vmk ) · x− r · im(1− x). (9)

The parameter x is a function of the control voltage. We have imple-
mented x as

x = 0.5 + 2 ·
µ
Vc − Va

Vd

¶3
− 1.5 · Vc − Va

Vd
(10)

where

Va =
Von + Voff

2
and Vd = Von − Voff . (11)

Both x and ∂x/∂Vc are continuous functions of Vc. An overview of switch
control functions is given in [18]. The stamp corresponding to (9) is given
in Fig. 8. As can be seen, the structure of nonzero entries is the same as for
the open and for the closed switch.
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vj vk i rhs

j 1

k −1
z 1 −1

−Rx
−r(1− x)

(vmj − vmk )x−
rim(1− x)

Figure 8: The stamp for the switch whose state is between open and closed
(with finite resistance).

When Vc ≤ Voff , parameter x acquires the value 1, and the stamp given
in Fig. 8 reduces to the one of Fig. 3b. If Vc > Voff , the value of x becomes
zero, and the stamp becomes equal to that of Fig. 3a. If Vc is between Voff
and Von, x has the value in the range (0,1). When convergence is reached,
v = vm and i = im. From (6) one can obtain the switch resistance as the
voltage-to-current ratio:

Rs =
x ·R
1− x

. (12)

The stamp given in Fig. 8 can also be applied to problems other than
the switch modelling. It can model extreme parameter values, while the
contribution to the system matrix is neither too low nor to high.

5 Simulation examples

5.1 The hybrid Ćuk converter

We will continue our review of simulation examples by examining the re-
cently proposed hybrid Ćuk converter with four capacitors [25]. It is an
improved version of the original Ćuk converter. The circuit schematic is
depicted in Fig. 9.

Simulation of this circuit was performed by the Alecsis simulator [26-28].
Simulation results are depicted in Fig. 10. Here, the responses of the load
current and the load voltage to a step of input voltage are presented. The
switches are externally controlled at rate of fs = 50kHz. The simulated
circuit elements are Vin = 12V, D = 0.75, Lin = 600µH, L0 = 600µH,
C1 = C2 = C3 = C4 = 22µF, and C0 = 1µF. These parameters are not
optimized from the point of view of circuit performance. For this simulation
nominal time-step value of t0 = 0.01µs was used.
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Figure 9: The new hybrid Ćuk converter with four capacitors [25].

Figure 10: Simulation results (step response) for the circuit of Fig. 9. Top:
load current, bottom: load voltage.
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5.2 Second order sigma-delta converter

The next example is related to simulation of complex mixed-signal circuits
that are nowadays frequently encountered in telecommunication and mea-
surement setups. Namely, one is to deal with structures containing analogue
circuits (described by ordinary differential equations), switches (represent-
ing elements described by Dirac impulses), digital functional elements (de-
scribed by discrete equations or by tables), and in many cases, transmission
lines, microelectromechanical and/or magnetic elements (that are described
by partial differential equations) [29]. Here we are demonstrating the appli-
cation of our switch-model to an one-bit second order sigma-delta modulator
[30] as depicted in Fig. 11.

Figure 11: Second order sigma-delta A/D converter.

Simulation was again performed by Alecsis and the results are given in
Fig. 12. The A/D converter is excited by a voltage ramp, the output being
a pulse train digitally representing the input. The element values and the
commutation scheme may be found in the original literature.

5.3 Application to testing and diagnosis

A specific application of the ideal switch is the fault modelling of elec-
tronic circuits [31]. Here the switch may be implemented to model perma-
nent short, permanent open, stuck-at, and the most interesting intermittent
faults. The procedure of fault insertion is simple. One should insert a switch
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wherever one intend to create a fault. Then simulations are performed for
the original circuit (the state of the switches are as if no defects are present)
and for the faulty circuit (the states of the switches are changed one at a
time to model the defects). If large number of defects are to be simulated
in order to create fault coverage for a given test signal or in order to create
a fault dictionary for diagnostic purposes, simulation time becomes crucial,
especially for complex nonlinear dynamic circuits. Here, effective model of
the switch is necessary.

As an example, we inserted a fault in the circuit of Fig. 11. The fault is:
switch ϕ11 stuck-at-open. Instead of giving the new simulation results for
the faulty circuit, we are presenting here the spectrum of the output signal
obtained by Fast Fourier Transform (FFT) of the simulation results for the
fault-free (Fig. 13) and the faulty (Fig. 14) circuit. Sinusoidal input signal
of 10kHz was implemented. The clear discrepancy of these two spectra may
be effectively used for both testing and diagnostic purposes.

Figure 12: Simulation results for the circuit of Fig. 11.
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Figure 13: The response spectrum of the circuit of Fig. 11.

Figure 14: The response spectrum of the circuit of Fig.11 with fault inserted.
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6 Conclusion

Considering the fact that any circuit containing ideal switch is nonlinear,
we developed a model for the ideal switch that is applicable in a general-
purpose time-domain circuit simulation program. The switch is considered
as a circuit element and used by routine as simple as any other circuit
element. One of the important properties of the model is that it handles
real situations such as managing the Dirac pulse that is encountered when
switching real circuits. Here, a set of examples is presented expressing, to
our opinion, the effectiveness of the model and its versatility.
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