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Abstract

The small-signal modeling of peak-current-mode (PCM) controlled
switched-mode converters has attracted the researchers and caused
lively discussions since the invention of the control mode. The appli-
cation of the PCM control makes the converter to resemble a current
source at open loop rather than a voltage source, what it actually is,
when the feedback loop is connected. The current-source nature has
caused problems to study the converter dynamics and the anomalies
it has, such as the limited duty ratio. As a consequence, generally
accepted small-signal models are not available but only a variety of
models serving the interests of different schools. In this paper, we will
show definitively that the models including infinite duty-ratio gain form
the basis for the accurate small-signal modeling as well as explain fully
the phenomena characteristic to PCM control.

Keywords: Peak-current-mode control, switched-mode converter, mode
limit, CCM

1 Introduction

Peak-current-mode (PCM) control was first publicly reported in 1978 [1,2]
and has been a popular control method due to its inherent dynamical fea-
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tures [3-5], such as pulse-by-pulse current limiting, high input-noise attenu-
ation, and close to first-order dynamics. The main disadvantages in contin-
uous conduction mode (CCM) are considered to be the limited duty ratio
requiring compensation to extend the duty-ratio range beyond 50 %, and the
noise sensitivity due to the high-bandwidth inductor-current feedback. The
principles of the duty-ratio generation under PCM control are shown in Fig.
1 using a buck converter as an example. In the practical applications, the
compensation ramp (RsMc) is added to the inductor-current signal (RsiL),
where Rs is the equivalent inductor-current sensing resistor.

The mode limit or the maximum duty ratio, up to which the basic
switching-frequency-mode operation without compensation is possible, has
been considered to be the point after which the operation of the converter
is unstable [1-4, 16-19]. The instability of the operation is typically proved
(as in [17]) by considering the propagation of the inductor-current pertur-
bation (∆iL) along the successive switching cycles. It is concluded that the
inductor-current perturbation may follow the rule

∆iLn
∆iLn−1

=

µ
d

d0

¶n

(1)

which after the infinite number of cycles (i.e., n → ∞) leads to an infinite
inductor current, when the duty ratio (d) is greater than 0.5.

The relation in the parenthesis of (1) was originally related to the up and
down slopes of the inductor current but concluded to be equal to the duty
ratio and its complement in CCM. The conclusion is, however, erroneous
because the slopes of the inductor current are always dependent only on the
input and output voltages but not on the duty ratio. It is natural that the
output voltage follows directly the duty ratio, when operating at the basic
switching frequency, and as a consequence, (1) holds but its maximum value
is naturally only equal to 1. The instantaneous duty-ratio relation does
not hold anymore in the subharmonic modes, because the output voltage
does not follow anymore the instantaneous duty ratio but the average of
the instantaneous duty ratios within the cycles defined by the subharmonic
order. It will be shown that the maximum value of the original ratio m2/m1

would stay equal to one without compensation in the subharmonic mode.
It was also shown on the base of chaos theories [20] that the subharmonic
operation is stable, and may occupy frequencies equal to fs/2n (See Fig. 2),
where fs is the switching frequency and n = 1,2,3, . . . , until the subharmonic
number is so high that the operation becomes chaotic.
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Figure 1: PCM-controlled buck converter in CCM: a) circuit schematics; b)
duty-ratio generation.
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The small-signal modeling technique presented in [8,9] is commonly re-
garded as the most accurate technique. It is based on the assumption that
the origin of peculiar behavior observable during the subharmonic opera-
tion (see Fig. 2) is the sampling effect causing resonant peaking at half
the switching frequency, and consequently high gain in the inductor-current
loop. It is, however, so that any sampling effect has not been observed and
should not theoretically exist [15] due to low-frequency eigenvalues of the
circuit. It was also shown by simulation [13] that the high-frequency accu-
racy of the models in [8] is quite poor. The experimental frequency responses
shown in [8] exhibit also poor high-frequency accuracy but the inaccuracy
was claimed to be the consequence of poor grounding.

There have been numerous attempts to model the dynamical behavior
of PCM-controlled converter in CCM, in addition to [8], such as [3,6,7,11-
13,16,21-31] but only in discontinuous conduction mode (DCM) [9,32]. It
was observed in [32] that similar phenomena as in CCM would take place
also in DCM but the subharmonic mode may occupy both the even and odd
subharmonics of the switching frequency. The mode limit would take place
at the point where the corresponding converter would change the operating
mode from DCM to CCM, respectively. The mode limit is avoided if the
compensation is sufficient for the CCM operation.

Figure 2: Simulated inductor current in the 2nd (solid line) and 4th (dash-
dotted line) subharmonic mode without compensation.
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In [25-27,30], it is proposed that the duty-ratio gain will become infi-
nite at the mode limit irrespective of the frequency in CCM causing the
peculiar behavior observed in the operation of the converter shown, e.g., in
Fig. 2. This proposition is, however, widely disputed as, e.g., in [12,13,29],
mainly because the existence of the extremely high gain has not been able to
measure even if the clear increase in the duty-ratio gain has been observed
along the increasing duty ratio [31]. The frequency-response measurement
of the inductor-current loop is practically impossible, because the required
loop isolation in the frequency sense cannot be fulfilled without affecting
the duty-ratio generation process (Fig.1b). The high gain is, however, ob-
servable in the unterminated transfer functions, which cannot be directly
measured, because the converter is a current source at open loop but may
be easily computed from the measurements carried out, e.g., at a resistive
load.

In [26], the high gain and the sampling effect are combined, and therefore,
the resulting models would give inaccurate predictions, which have plagued
the comparisons, e.g., in [12] in the favor of [8] or even led to proposing
corrected models based on the sampling effect [13]. We will show in this
paper that the peculiar behavior observable in the converter operation may
be fully explained based on the high duty-ratio gain and, in addition, the
models derived based on the high gain would give accurate predictions up
to half the switching frequency.

The rest of the paper is organized as follows. The modeling technique
is described in Section 2 including the general representation of the set of
transfer functions for buck, boost, and buck-boost converters, as well as
the effect of the transformer isolation in the case of forward, active-clamped
forward and full-bridge converters. In Section 3, the origin and consequences
of the mode limit are discussed and explanations are provided. In Section 4,
the unterminated modeling is shortly introduced and utilized to obtain the
evidence needed for the existence of high duty-ratio gain dependent only on
the duty ratio. The conclusions are presented in Section 5.

The notations used in this paper are as follows. The capital letters
denote the steady-state (DC) or Laplace values of the associated quantity,
the hatted small letters denote the small-signal (ac) or perturbed values of the
associated quantity excluding the switching ripple, the small letters denote
the total values of the associated quantity, and the bracketed letters denote
the time-varying average values of the associated quantity taken over one
switching cycle, respectively.
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2 Small-signal modeling

2.1 Introduction

The power stage of the associated converter does not change under PCM
control, and therefore, the values of the different variables at the operating
point are the same as under voltage-mode (VM) control. The only difference
in the hardware sense is the generation of the duty ratio, which is based on
the up slope of the inductor current (Fig.1b). Therefore, it may be obvious
that the PCM control would be a direct derivative of VM control, i.e., the
basic averaged and small-signal state spaces are the same but the duty ratio
is no longer independent but a function of the control current, the other
circuit variables and elements, respectively. The control current, denoted
by ico, may be presented as vc/Rs when using the variables shown in Fig.
1a.

Figure 3: Definition of the variables used in the dynamical modeling of a
converter.

To obtain the dynamical description for the PCM control, the functional
dependence of the duty ratio on the control current, the other variables and
circuit elements should be found. The small-signal functional dependence
is commonly known as duty-ratio constraints [16], and presented according
to (2), where the variables are defined in Fig. 3, respectively. The control
current equals to c in Fig. 3.
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d̂ = Fm(̂ıco − qcı̂L − qoûo − qiûin). (2)

A typical procedure in obtaining the PCM state-space representation
from the corresponding VM state-space representation is to replace the per-
turbed duty ratio with (2). It may be, however, obvious that the procedure
would not be theoretically sound without replacing also the perturbed out-
put voltage with its correct dependence on the state, input and control
variables. The state-space-form constraints may be presented as

d̂ = F sp
m (̂ıco − qspc ı̂L − qspo ûc − qspi ûin − qspjo ̂o) (3)

where the superscript ‘sp’ stands for state space.
The duty-ratio constraints of (2) may be, however, used effectively,

when the VM small-signal transfer functions are utilized in the control-
engineering-block-diagram form modified in such a way that the small-signal
inductor current is available for the feedback purposes as shown in Fig. 4.
The coefficients A and B for the buck, boost, and buck-boost converters are
as follows: buck— A = 1, B = 0, boost and buck-boost— A = D0, B = IL.
The set of transfer functions forming the base for the dynamical character-
ization of a converter known also as G-parameters [36]. may be presented
according to (4):

·
îin
ûo

¸
=

·
Yin−o Tji−o Gci

Gio−o −Zo−o Gco

¸ ûin
ĵo
ĉ

 . (4)

According to Fig. 4, the set of transfer functions describing the output
dynamics (Fig. 4a) may be presented in a general form as (5) and for
the input dynamics (Fig. 4b) as (6), respectively, where the loop gains
Lc(s) (i.e., inductor-current loop) and Lv(s) (i.e., output-voltage loop) are
defined in (7). The transfer functions denoted using the subscript extension
‘v’ are the corresponding VM transfer functions. ZLv is the impedance
of the output capacitor connected in parallel with the load impedance ZL

(Fig. 3). The transfer functions in Fig. 4a denoted with G are naturally
the transfer functions from the input and control variables to the inductor
current derivable from the corresponding state space. The formalism used
in presenting the transfer functions in (5) and (6) is very useful for making
conclusions whether the different small-signal phenomena exist or not in
the PCM controlled converter based on the knowledge of the corresponding
VM controlled converter. As an example, it may be concluded that the
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Figure 4: Block diagrams for PCM control in CCM for buck, boost and
buck-boost converters: a) output dynamics; b) input dynamics.
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right-hand-plane (RHP) zero existing in the VMC boost and buck-boost
converters in CCM would exist similarly in the PCMC converters, according
to (5).

Gio−o =
(1 + BFm

A )Gio−ov − FmqiGcov

1 + Lc(s) + Lv(s)
,

Zo−o =
(1 + BFm

A )Zo−ov +
Fm
A Gcov

1 + Lc(s) + Lv(s)
,

Gco =
FmGcov

1 + Lc(s) + Lv(s)
,

(5)

Yin−o = Yin−ov −
Fm((qo +

1
AZLv

)Gio−ov + qi)Gciv

1 + Lc(s) + Lv(s)
,

Tji−o = Tji−ov +
Fm((qo +

1
AZLv

)Zo−ov − 1
A)Gciv

1 + Lc(s) + Lv(s)
,

Gci =
FmGciv

1 + Lc(s) + Lv(s)
,

(6)

Lc(s) = FmGciLv ,

Lv(s) = FmGcov .
(7)

2.2 Duty-ratio constraints

Under PCM control, the duty ratio is generated using the up slope of the
inductor current as shown in Fig. 5. The duty ratio is established, when
the on-time inductor current iL reaches the compensated control current
ico. It is essential to observe that the state variable is the time-varying
averaged inductor current hiLi. Therefore, the comparator equation may
be expressed as shown in (8), where ∆iL is the distance between the peak
inductor current and the time-varying average inductor current as shown in
Fig. 5. It may be obvious, according to (8), that the main task is to find
the correct description for ∆iL:

ico −McdTs = hiLi+∆iL. (8)
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Figure 5: Duty ratio generation based on inductor current.

In CCM, the on-time and off-time inductor currents (Fig. 6) may be
approximated with a first-order function of time shown in (9). The time-
varying averaged inductor current may be also presented as a first-order
function of time according to hiLi = c1t+ c2, where c1 is the average deriv-
ative of iL−on and iL−off , i.e., c1 = dm1− d0m2 [30]. The coefficient c2 may
be found by equating the areas covered by iL and hiLi within a switching
cycle which gives c2 =

dd0Ts
2
(m1 +m2) + iL(kTs). Therefore, hiLi may be

presented as shown in (10). ∆iL may be easily found computing the differ-
ence iL−on((k + d)Ts) − hiL(k + d)Tsi at t = (k + d)Ts, which gives (11),
respectively.

iL−on = m1t+ iL(kTs), kTs ≤ t ≤ (k + d)Ts,

iL−off = −m2t+ (m1 +m2)dTs + iL(kTs), (k + d)Ts ≤ t ≤ kTs,
(9)
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hiLi = (dm1 − d0m2) · t+ dd0Ts
2
(m1 +m2) + iL(kTs), (10)

∆iL =
dd0

2
· (m1 +m2). (11)

Figure 6: Inductor current waveforms.

Implicitly the same value for ∆iL (11) is obtained in [25] by inspecting
the inductor current waveforms, and in [27] using the theoretical averaging
method known as KBM method [15]. In [26], the same value is used but its
origin is not clearly stated. When (11) is inserted into (8), we obtain the
averaged duty-ratio constraints (12) from which the small-signal constraints
(2) and (3) may be derived by replacing the topology-based up and down
slopes and developing the proper partial derivatives:

ico −McdTs = hiLi+ dd0

2
· (m1 +m2). (12)
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The corresponding coefficients are shown in Table 1 (2) and Table 2 (3)
for the buck, boost, and buck-boost converters, respectively. The coefficients
in Table 2 are presented in such a way that the effect of load impedance is
removed, i.e., in an unterminated mode, which is explained in more detail
in Section 4. The PCMC transfer functions may be obtained from (5) and
(6) by replacing the corresponding coefficients with those defined in Table
1. It may be obvious that, according to Tables 1 and 2, the duty-ratio gain
Fm would become infinite at D = 50% without compensation (i.e.,Mc = 0).
The maximum duty ratio, when a certain amount of compensation is applied,
may be presented in a general form as

Dmax = 0.5 +
Mc

M1 +M2
(13)

Table 1. Coefficients of duty-ratio constraints in (2).
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2.3 Effect of transformer isolation

Transformer isolation is often used for safety reasons and/or for scaling the
input voltage to obtain more optimal duty-ratio range [33,34]. The inductor-
current feedback is commonly taken from the transformer primary current
containing the reflected secondary inductor current and the magnetizing
current of the transformer as shown in Fig. 7 in the case of a single-ended
forward converter. It may be obvious that the magnetizing current may
have a similar effect as the artificial compensation.

Consequently, the effect of magnetizing inductance on the duty-ratio
constraints may be considered similarly to the artificial compensation giving
the comparator equation (2), as shown in (14) for buck derived converters,

where LM1 =
³
N2
N1

´2 ·LM , uin1 = N2
N1
·uin, and k is a scaling factor dependent

on the transformer reset mechanism: k = 1 for single and double ended
forward; k = 1/2 for active-clamped forward [35] and full-bridge [16]:

ico −McdTs − kuin1dTs
LM1

= hiLi+ dd0Tsuin1
2L

. (14)

By taking proper partial derivatives, we may compute from (14) the
duty-ratio-constraints coefficients shown in (15). It may be obvious that
the active duty-ratio range would be extended beyond 50 % (16) depend-
ing on the reset mechanism and the ratio between the inductance values
of the output inductor and the magnetizing inductor without the artificial
compensation.

Fm =
1

Ts(Mc +
kUin1
2LM1

+ (D0−D)Uin1
2L )

,

qc = 1,
qo = 0,

qi =
kDTs
2LM1

+
DD0Ts
2L

,

(15)

Dmax = 0.5 +
kL

2LM1
. (16)

3 Origin and consequences of mode limit

The duty-ratio constraints of (12) may be also presented at the steady state
as shown in (17). We may compute from (17) that Ico−IL may be presented
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in respect to the steady-state duty ratio as shown in (18), which clearly has

a minimum at D = 0.5 +
Mc

M1 +M2
:

Figure 7: Single-ended forward converter: a) circuit schematics without
reset winding; b) primary-side switch current.
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Ico − IL = −(M1 +M2)Ts
2

·D2 + (Mc +
M1 +M2

2
)Ts ·D, (17)

(Ico − IL)min =
McTs
2

(1 +
Mc

M1 +M2
) +

(M1 +M2)Ts
8

. (18)

The duty ratio corresponding to the minima (18) is exactly the same as
the maximum duty ratio defined in (13) at which the small-signal duty-ratio
gain Fm would become infinite. The shape of the difference Ico−IL dictates
that it would decrease along the increasing duty ratio up to the mode limit
after which it should start decreasing again. It is, however, impossible in
practice, because the increasing duty ratio would further decrease the peak-
to-peak inductor-current ripple. We may also develop (17) in terms of D, as
shown in (19), having solution shown in (20). If Ico − IL in (20) is replaced
with the minima (18), the term inside the square root becomes equal to zero,
i.e., the real valued solutions exist only up to Dmax (13).

D2 − (1 + 2Mc

M1 +M2
)D +

2(Ico − IL)

Ts(M1 +M2)
= 0, (19)

D =
1

2
(1 +

2Mc

M1 +M2
)−

s
1

4

µ
1 +

2Mc

M1 +M2

¶2
− 2(Ico − IL)

Ts(M1 +M2)
. (20)

It is observed that the behavior of the PCM controlled converter is pecu-
liar after the mode limit: the inductor current up and down slopes maintain
a certain relation (Fig. 8) and the ideal modulo M(D) behaves as if the
duty ratio were equal to Dmax defined in (13).

The observed peculiar behavior at open loop may be explained in such a
way that the infinite duty-ratio gain Fm forces the derivative of the average
inductor current (i.e., dm1 − d0m2 [30]) to be zero, because the small-signal
control current is zero at open loop. At the mode limit d = Dmax, and
therefore, DmaxM1 −D0

maxM2 = 0 giving (21). If Dmax in (21) is replaced
with (13), we will get (22). The relation in (21) defines that the up and
down slopes are equal whenMc = 0, as may be easily observed from Fig. 8a.
When compensation is applied, the relation between the slopes is

M1

M2
=

D0
max

Dmax
, (21)

M1 =M2 + 2Mc. (22)
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Figure 8: Inductor-current waveforms in subharmonic mode: a) measured
inductor-current waveforms in the second harmonic mode without compen-
sation; b) simulated inductor-current waveforms in the second harmonic
mode with a certain amount of compensation.
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According to Fig. 8b, we may compute that

(M1 +Mc)D1 =M2D
0
2 +McD2

(M1 +Mc)D2 =M2D
0
1 +McD1

(23)

D1 +D2
2

=
M2

M1 +M2
. (24)

Eq. (24) defines the average duty ratio Dav in the second-subharmonic
mode. If we denote by M = Uo

Uin
, and consider the ideal converters, then,

according to (24), we will get for a buck converter M = Dav, for a boost
converter M = 1

D0
av
, and for a buck-boost converter M = Dav

D0
av
, which are

similar to the ideal modulos defined, e.g., in [16]. We may compute that
Dav = Dmax defined in (13).

4 Unterminated modeling

The set of transfer functions (4) is typically derived using a resistive load
(i.e.,ZL = R, Fig. 9). Most often, the impedance-type load is not known
in the practical applications, and it may vary. Therefore, it may be obvi-
ous that the dynamic model of a converter should be one from which the
load effect is removed. Such a model is known as an unterminated model
[30]. The unterminated transfer functions may be derived assuming the con-
verter to be loaded only with a constant-current-type load (i.e., io in Fig. 9).
The dynamics associated to a converter may be presented using a two-port
model equivalent to the set of transfer functions in (4). In an unterminated
mode, the two-port model may be given as shown in Fig. 9, where the su-
perscript ‘*’ denotes the unterminated nature of the corresponding transfer
functions [30].

The load effect may be added to the output dynamics computing ûo from
Fig. 9 at the presence of the load giving

ûo =
G∗io−o · ûin − Z∗o−o · ̂o +G∗co · ĉ

1 +
Z∗o−o
ZL

(25)

The load effect on the input dynamics may be found computing ı̂o at the
output side and replacing it in the input side by means of the computed
formula. We are only interested in the output dynamics, and therefore, we
do not present the formulation to the input dynamics but it may be found
from [30].
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Figure 9: Two-port model of a converter and a load.

The unterminated transfer functions may be measured also in practice
using frequency-response analyzers, when the converter is loaded with a
constant-current load. A PCM controlled converter is, however, a current
source at open loop, and therefore, it does not operate at a constant-current
load properly but the load has to be, e.g., a resistor. At resistive load,
the increase in the duty-ratio gain, when approaching the mode limit, may
not be clearly observable due to the effect of the resistive load. Eq. (25)
would, however, provide a method to compute the unterminated transfer
functions, where the effect is clearly visible, from the measured transfer
functions. The unterminated control-to-output transfer function G∗co and
the open-loop output impedance Z∗o−o would show the effect especially at the
low frequencies, where the magnitude would increase and the low-frequency
pole would move closer to the origin, when the duty ratio approaches the
mode limit, i.e., 50 %. The moving of the high-frequency pole of G∗co closer
to the infinity may be also observable from the phase behavior but may be
hardly measured accurately in practice. G∗co and Z∗o−o may be computed
from the measured Gco and Zo−o as

Z∗o−o =
RZo−o

R− Zo−o
,

G∗co =
Gco

Zo−o
· Z∗o−o.

(26)

G∗co and Z∗o−o of an ideal buck converter in CCM are shown in (27),
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and the corresponding terminated transfer functions, respectively, in (28).
According to (27), it may be obvious that the maximum gain of G∗co and
Z∗o−o is equal to FmUin providing the evidence of high duty-ratio gain if
existing. According to (28), the maximum gain of Gco and Zo−o is equal to
R, which may be difficult to interpret directly as an evidence of the existing
high duty-ratio gain.

G∗co =

FmUin

LC

s2 + s
FmUin

L
+

1

LC

,

Z∗o−o =

FmUin + sL

LC

s2 + s
FmUin

L
+

1

LC

,

(27)

Gco =

FmUin

LC

s2 + s(
FmUin

L
+

1

RC
) +

FmUin +R

LCR

,

Zo−o =

FmUin + sL

LC

s2 + s(
FmUin

L
+

1

RC
) +

FmUin +R

LCR

.

(28)

The frequency responses of the terminated control-to-output transfer
function and the open-loop output impedance of an ideal buck converter
operating at 100 kHz at a resistive load were simulated, and the gain and
phase of the responses were extracted from the response data using the fast
Fourier transformation (FFT). The corresponding unterminated responses
were computed using (26). The frequency responses of the unterminated
control-to-output transfer function, when the duty ratio approaches the
mode limit (i.e., D = 0.3857, 0.4639, 0.4889, 0.4942), are shown in Fig. 10a
for the frequencies from 1 Hz to 100 kHz. The simulated responses are de-
noted using a dot. The lowest and highest excitation frequencies were 3
Hz and 30 kHz, respectively. The effect of the increasing duty-ratio gain is
best observable as the low-frequency phase behavior but also visible at the
high-frequency phase behavior as well as at the low-frequency gain. The
frequency responses of the unterminated open-loop output impedance are
shown in Fig. 10b for the frequencies from 0.1 Hz to 100 Hz. The simulated
frequency responses at 3 Hz and 10 Hz are denoted using a dot. The effect
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of the increasing duty-ratio gain is clearly visible. The predictions and the
switching-model frequency responses match each other extremely well.

5 Conclusions

The small-signal modeling of a PCM controlled converter would be a direct
derivative of a corresponding direct-duty-ratio or VM controlled converter.
The small-signal state space of a PCM controlled converter may be obtained
from the corresponding VM state space by replacing the perturbed duty ratio
with the duty-ratio constraints describing the functional dependence of the
duty ratio on the control current and other variables, as well as circuit
elements. The derived duty-ratio gain would exhibit infinite gain at the
mode limit, as already has been proposed several times earlier. The possible
existence of the frequency-independent high gain has been disputed because
of inability to measure the high gain. We showed in this paper that the
high gain is clearly visible in the unterminated transfer functions, which
cannot be directly measured using a constant-current load at open loop but
may be computed from the responses measured, e.g., at a resistive load.
The infinite gain would also explain the peculiar behavior observed at open
loop and provide useful information for the analysis and design of the PCM
controlled converters.
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