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Abstract

Mathematical modelling of power DC/DC converters is a historical
problem accompanying development of the DC/DC conversion technol-
ogy since 1940’s. The traditional mathematical modelling is success-
ful to describe fundamental converters but not available for complex
structure converters due to a dramatic increase of the order of corre-
sponding differential equations. We have to search an other way to
establish mathematical modelling for power DC/DC converters.
Energy storage in power DC/DC converters has been paid atten-

tion to since long time ago. Unfortunately, there is no clear concept
to describe the phenomena and reveal the relationship between the
stored energy and the characteristics of power DC/DC converters. In
this paper, we have theoretically defined a new concept - Energy Factor
(EF) and investigated the relations between EF and the mathemati-
cal modelling of power DC/DC converters. EF is a new concept in
power electronics and conversion technology, which thoroughly differs
from the traditional concepts such as power factor (PF), power trans-
fer efficiency (η), total harmonic distortion (THD), and ripple factor
(RF). EF and the subsequential other parameters can illustrate the
system stability, reference response, and interference recovery. This
investigation is very helpful for system design, and DC/DC converters
characteristics.
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1 Introduction

Mathematical modelling of power DC/DC converters is a historical prob-
lem accompanying development of the DC/DC conversion technology since
1940’s. Many experts such as Sira-Ramirez, Czarkowski, Ilic, Lee, Cuk and
Middlebrook devoted in this area [1-8]. The traditional mathematical mod-
elling is successful in describing fundamental converters, but not available
for complex structure converters due to a dramatic increase of the order of
corresponding differential equations. Fundamental DC/DC converters have
been derived from choppers. The preliminary work on the mathematical
modelling of power DC/DC converters followed the traditional calculation
manner using impedance analysis to write a transfer function in the s-domain
(Laplace transform). We have to search other ways to establish mathemat-
ical modelling of power DC/DC converters.

Energy storage in power DC/DC converters has been paid attention to
since long time ago. Unfortunately, there is no clear concept to describe
the phenomena and reveal the relationship between the stored energy and
the characteristics of power DC/DC converters. In this paper, we have the-
oretically defined a new concept - Energy Factor (EF) and researched the
relations between EF and the mathematical modelling for power DC/DC
converters. EF is a new concept in power electronics and conversion tech-
nology, which thoroughly differs from the traditional concepts such as power
factor (PF), power transfer efficiency (η), total harmonic distortion (THD),
and ripple factor (RF). EF and the subsequential EFV (and EFV D) can
illustrate the system stability, reference response, and interference recov-
ery. This investigation is very helpful for system design and prediction of
DC/DC converters characteristics. Two DC/DC converters: Buck converter
and Super-Lift Luo-Converter are analysed as examples to demonstrate the
applications of EF, EFV , PE, SE, VE, time constant τ and damping time
constant τd.
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2 Second-order transfer function

A typical second-order transfer function in the s-domain is shown below:

G(s) =
M

1 + sτ + s2ττd
=

M

1 + sτ + ξs2τ2
(1)

where M is the voltage transfer gain, τ the time constant, τd the damping
time constant (τd = ξτ).

2.1 Very small damping time constant

If the damping time constant is very small (i.e. τd << τ , ξ << 1) and can be
ignored, the value of the damping time constant τd is omitted (i.e. τd = 0,
ξ = 0). The transfer function (1) is downgraded from the second-order to
the first order as

G(s) =
M

1 + sτ
. (2)

This is the transfer function of the first-order inertia element. This
expression describes the characteristics of the DC/DC converter as a first-
order inertia element. The step function response in the time-domain is

g(t) =M(1− e−
t
τ ). (3)

The transient process (settling time) is nearly 3 times of the time con-
stant, 3τ , to produce g(t) = g(3τ) = 0.95M . The response waveform in the
time-domain is shown in Fig. 1 with τd = 0.

The impulse interference response in the time-domain is

∆g(t) = U · e− t
τ (4)

where U is the interference signal. The interference recovering progress is
nearly 3 times of the time constant, 3τ . The response waveform in the
time-domain is shown in Fig. 2 with τd = 0.

2.2 Small damping time constant

If the damping time constant is small (i.e. τd < τ/4, ξ < 0.25) but cannot
be ignored, the value of the damping time constant τd is not omitted. The
transfer function (1) restores its second-order character with two real poles
σ1 and σ2 as

G(s) =
M

1 + sτ + s2ττd
=

M/ττd
(s+ σ1)(s+ σ2)

(5)
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Figure 1: Step function responses (τd = 0, 0.1τ , 0.25τ and 0.5τ).

Figure 2: Impulse responses (τd = 0, 0.1τ , 0.25τ and 0.5τ).
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where

σ1 =
τ +

p
τ2 − 4ττd
2ττd

and σ2 =
τ −

p
τ2 − 4ττd
2ττd

.

There are two real poles in the transfer function, and σ1 > σ2. This
expression describes the characteristics of the DC/DC converter. The step
function response in the time-domain is

g(t) =M
¡
1 +K1e

−σ1t +K2e
−σ2t¢ (6)

where

K1 = −1
2
+

τ

2
p
τ2 − 4ττd

and K2 = −1
2
− τ

2
p
τ2 − 4ττd

.

The transient process is nearly 3 times of the time value 1/σ1, 3/σ1 <
3τ . The response process is quick without oscillation. The corresponding
waveform in the time-domain is shown in Fig. 1 with τd = 0.1τ .

The impulse interference response in the time-domain is

∆g(t) =
Up

1− 4τd/τ
¡
e−σ2t − e−σ1t

¢
(7)

where U is the interference signal. The transient process is nearly 3 times
of the time value 1/σ1, 3/σ1 < 3τ . The response waveform in time-domain
is shown in Fig. 2 with τd = 0.1τ .

2.3 Critical damping time constant

If the damping time constant is equal to the critical value (i.e. τd = τ/4),
the transfer function (1) is still of the second order with two equal real poles
σ1 = σ2 = σ as

G(s) =
M

1 + sτ + s2ττd
=

M/ττd
(s+ σ)2

(8)

where
σ =

1

2τd
=
2

τ
.

There are two folded real poles in the transfer function. This expression
describes the characteristics of the DC/DC converter. The step function
response in the time-domain is

g(t) =M

·
1−

µ
1 +

2t

τ

¶
e−

2t
τ

¸
. (9)
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The transient process is nearly 2.4 times of the time constant τ , 2.4τ .
The response process is quick without oscillation. The response waveform
in the time-domain is shown in Fig. 1 with τd = 0.25τ .

The impulse interference response in the time-domain is

∆g(t) =
4U

τ
te−

2t
τ (10)

where U is the interference signal. The transient process is still nearly 2.4
times of the time constant, 2.4τ . The response waveform in the time-domain
is shown in Fig. 2 with τd = 0.25τ .

2.4 Large damping time constant

If the damping time constant is large (i.e. τd > τ/4, ξ > 0.25), the transfer
function (1) is a second-order function with a couple of conjugated complex
poles s1 and s2 in the left-hand half plane in the s-domain as

G(s) =
M

1 + sτ + s2ττd
=

M/ττd
(s+ s1)(s+ s2)

(11)

where
s1 = σ + jω and s2 = σ − jω,

σ =
1

2τd
and ω =

p
4ττd − τ2

2ττd
.

There is a couple of conjugated complex poles s1 and s2 in the trans-
fer function. This expression describes the characteristics of the DC/DC
converter. The step function response in the time-domain is

g(t) =M [1− e
− t
2τd (cosωt− 1p

4τd/τ − 1
sinωt)] (12)

The transient response has an oscillating character with the damping
factor σ and frequency ω. The corresponding waveforms in the time-domain
are shown in Fig. 1 with τd = 0.5τ and in Fig. 3 with τ , 2τ , 5τ and 10τ .

The impulse interference response in the time-domain is

∆g(t) =
Uq

τd
τ − 1

4

e
− t
2τd sin(ωt) (13)

where U is the interference signal. The recovery process is a curve with
damping factor σ and frequency ω. The response waveforms in the time-
domain are shown in Fig. 2 with τd = 0.5τ and in Fig. 4 with τ , 2τ , 5τ ,
and 10τ .
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Figure 3: Step function responses (τd = τ , 2τ , 5τ , and 10τ).

Figure 4: Impulse responses (τd = τ , 2τ , 5τ , and 10τ).
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3 Traditional modeling for fundamental conver-
ters

Fundamental converters such as Buck converter in Fig. 5 (a), Boost converter
in Fig. 5 (b), and Buck-Boost converter in Fig. 5 (c), consist of one inductor
L and one capacitor C with the load R, and have the transfer function given
in [9, 10]. For convenience, the input voltage and current are defined V1 and
I1, and the output voltage and current are defined V2 and I2. The switching
frequency is f , and the period T = 1/f . The conduction duty cycle is k.

G(s) =
M

1 + sLR + s2LC
=

M

1 + sτ + s2ττd
(14)

where M is the voltage transfer gain M = V2/V1 = k, τ the time constant
τ = L/R, τd the damping time constant τd = RC = ξτ , s the Laplace
operator in the s-domain.

It is a second-order transfer function in the s-domain. The corresponding
dynamic equation is a second-order differential equation. This mathematical
model is available for the case with no power losses during the conversion
process. It was successfully used to describe the characteristics of a Buck
converter: stability, transient process, step response (settling time), and
impulse response (interference recovering time).

3.1 Mathematical modeling of a buck converter without power
losses

A Buck converter shown in Fig. 5 (a) has the following values of the com-
ponents: V1 = 40 V, L = 250 µH, C = 60 µF, R = 10 Ω, the switch-
ing frequency f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle
k = 0.4. Therefore, we have got the voltage transfer gain M = k = 0.4, i.e.
V2 = kV1 = 16 V, the time constant τ = L/R = 25 µs and the damping time
constant τd = RC = 600 µs. From cybernetic theory, this Buck converter
is stable since the two poles (-s1 and -s2) are located in the left-hand half
plane (LHHP):

G(s) =
M

1 + sτ + s2ττd
=

M/ττd
(s+ s1)(s+ s2)

(15)

where
s1 = σ + jω and s2 = σ − jω
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Figure 5: Fundamental converters.
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with
σ =

1

2τd
=

1

1200µs
= 833.33 Hz (16)

and

ω =

p
4ττd − τ2

2ττd
=

√
60000− 625
30000µ

=
243.67

30000µ
= 8122 rad/s. (17)

There is a couple of conjugated complex poles s1 and s2 in the trans-
fer function. This expression describes the characteristics of the DC/DC
converter. The step function response in the time-domain is

V2(t) = 16[1− e−
t

0.0012 (cos 8122t− 0.1026 sin 8122t)] V. (18)

The step function response (transient process) has an oscillation charac-
ter with the damping factor σ and frequency ω, and is shown in Fig. 6.

The impulse interference response in the time-domain is

∆V2(t) = 0.205Ue
− t
0.0012 sin 8122t (19)

where U is the interference signal. The impulse response (interference re-
covery process) has an oscillation character with the damping factor σ and
frequency ω, and is shown in Fig. 7.

3.2 Mathematical modeling of a buck converter with small
power losses

If there are some power losses in the form of a resistance rL in the inductor
L, we have got the following transfer function

G(s) =
R

R+rL
k

1 + sL+RCrLR+rL
+ s2LC R

R+rL

=
pk

1 + sτ + s2ττd
(20)

where M is the voltage transfer gain

M = V2/V1 = pk,

τ the time constant

τ =
L+RCrL
R+ rL

,

τd the damping time constant

τd =
LRC

L+RCrL
,
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Figure 6: Step function response of a Buck converter without power losses.

Figure 7: Impulse response of a Buck converter without power losses.
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p the proportionality constant

p =
R

R+ rL
.

If the resistance rL is equal to zero meaning no power losses, p = 1. To
verify the correction of this mathematical model, we take the value of the
resistance rL = 1.5 Ω with other parameters unchanged, which gives:

τ =
L+RCrL
R+ rL

=
250µ+ 15 ∗ 60µ

11.5
= 100µs,

τd =
LRC

L+RCrL
=
250µ ∗ 10 ∗ 60µ
250µ+ 15 ∗ 60µ =

150000µ

1150
= 130.4µs,

p =
R

R+ rL
= 0.87, M = pk = 0.348.

Therefore,

τd = 130.4µ = 1.304τ , ξ =
τd
τ
= 1.304 > 0.25,

V2 = pkV1 = 0.87 ∗ 0.4 ∗ 40 = 13.9 V.
This transfer function in the s-domain is still a second-order function.

Since τd = 1.304τ > 0.25τ , this Buck converter is stable and the two poles
(-s1 and -s2) are located in the left-hand half plane (LHHP):

G(s) =
M

1 + sτ + s2ττd
=

pk/ττd
(s+ s1)(s+ s2)

(21)

where
s1 = σ + jω and s2 = σ − jω

with
σ =

1

2τd
=

1

260µs
= 3846 Hz (22)

and

ω =

p
4ττd − τ2

2ττd
=

√
52000− 10000
26000

=
204.94

26000
= 7882 rad/s. (23)
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Figure 8: Step function response of a Buck converter with rL = 1.5 Ω.

Figure 9: Impulse response of a Buck converter with rL = 1.5 Ω.
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The step function response in the time-domain is

V2(t) = 13.9[1− e−
t

0.00026 (cos 7882t− 0.487 sin 7882t)] V. (24)

The step function response (transient process) has an oscillation charac-
ter with the damping factor σ and frequency ω and is shown in Fig. 8.

The impulse interference response in the time-domain is

∆V2(t) = 0.974Ue
− t
0.00026 sin 7882t (25)

where U is the interference signal. The impulse response (interference re-
covery process) has an oscillation character with the damping factor σ and
frequency ω, and is shown in Fig. 9.

3.3 Mathematical modeling of a buck converter with large
power losses

If the value of the resistance rL = 4.5 Ω with other parameters unchanged,
we have:

τ =
L+RCrL
R+ rL

=
250µ+ 45 ∗ 60µ

14.5
= 203.45 µs,

τd =
LRC

L+RCrL
=
250µ ∗ 10 ∗ 60µ
250µ+ 45 ∗ 60µ =

150000µ

2770
= 50.85 µs,

p =
R

R+ rL
= 0.69.

Therefore,

τd = 203.45µ = 0.24994τ , ξ =
τd
τ
= 0.24994 < 0.25,

V2 = pkV1 = 0.69 ∗ 0.4 ∗ 40 = 11.04 V.
This transfer function in s-domain is still a second-order function. Since

τd < 0.25τ , this Buck converter is stable and the two poles (-σ1 and -σ2)
are real numbers located in the left-hand half plane (LHHP):

G(s) =
M

1 + sτ + s2ττd
=

pk/ττd
(s+ σ1)(s+ σ2)

(26)
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Figure 10: Step function response of a Buck converter with rL = 4.5 Ω.

Figure 11: Impulse response of a Buck converter with rL = 4.5 Ω.
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where

σ1 =
τ +

p
τ2 − 4ττd
2ττd

=
203.45 +

√
41392− 41382

20691µ
=
203.45 + 3.16

20691µ
= 9986

(27)
and

σ2 =
τ −

p
τ2 − 4ττd
2ττd

=
203.45−√41392− 41382

20691µ
=
203.45− 3.16
20691µ

= 9680.

(28)
The step function response in the time-domain is

K1 = −1
2
+

τ

2
p
τ2 − 4ττd

= −0.5+ 203.45

2
√
41392− 41382 = −0.5+32.1 = 31.6,

K2 = −1
2
− τ

2
p
τ2 − 4ττd

= −0.5− 203.45

2
√
41392− 41382 = −0.5−32.1 = −32.6,

V2(t) =MV1(1+K1e
−σ1t+K2e

−σ2t) = 11
¡
1 + 31.6e−9986t − 32.6e−9680t¢ V.

(29)
The step function response (transient process) has no oscillation charac-

ter and is shown in Fig. 10.
The impulse interference response in the time-domain is

∆V2(t) =
Up

1− 4τd/τ
¡
e−σ2t − e−σ1t

¢
= 63.8U

¡
e−9680t − e−9986t

¢
V (30)

where U is the interference signal. The impulse response (interference re-
covery process) has no oscillation character, and is shown in Fig. 11.

3.4 Remarks

This mathematical model (17) is available for Boost converter and Buck-
Boost converter as well. It is very easy to perform the operations and
calculations in Sect. 3.1 — 3.3 for Boost converter and Buck-Boost converter.
However, it is difficult to use this method to complex structure converters
such as Luo-Converters, Cuk converter and SEPIC since they contain more
inductors and capacitors in those converters so that their transfer functions
are of a forth or higher order.
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From application practice, most experts guessed that a second-order
transfer function is good enough to describe the characteristics of power
DC/DC converters. A popular way is the order-reducing method. If some
inductors or/and capacitors have very large values, their current or/and volt-
age variations are small and can be ignored. For example, the Super-Lift
Luo-Converter shown in Fig. 12 has the following transfer function (without
power losses):

Figure 12: Super-Lift Luo-Converter.

G(s) =
M R

1+sC2R

sL+ 1
sC1

+ R
1+sC2R

=
MsC1R

1 + s(C1 +C2)R+ s2LC1 + s3LC1C2R

(31)
where M = 2−k

1−k is the voltage transfer gain with k, the conduction duty
cycle. It is a third-order transfer function. If we choose C1 much larger
than C2, i.e. C1 À C2 or C2/C1 = 0, it is downgraded to a second-order
transfer function:

G(s) =
M R

1+sC2R

sL+ 1
sC1

+ R
1+sC2R

=
M

1 + sLR + s2LC2
. (32)

Similarly, if some power losses, such as inductor’s resistance rL not equal to
zero, we obtain the equation similar to (20) in Sect. 3.2:
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G(s) =
M

1 + sL+RC2rLR+rL
+ s2LC2

R
R+rL

=
M

1 + sτ + s2ττd
(33)

where M = p2−k1−k , and p is a proportionality constant.
This method can be sufficiently accurate for circuit analysis. Unfortu-

nately, some industrial applications cannot satisfy the condition C1 À C2.
It is more difficult to apply this method to some complex structure convert-
ers. For example, a positive-output Luo-converter has two inductors and
two capacitors [9]. The conditions: L1 À L2 and C1 À C2 have to be
selected for applying this order-reducing method. We have to find an other
way to establish mathematical modeling of power DC/DC converters.

4 Energy factor and new mathematical modeling

Many traditional parameters such as power factor (PF), power transfer ef-
ficiency (η), total harmonic distortion (THD), and ripple factor (RF), have
been successfully applied in power electronics and conversion technology
[9—13]. Using these parameters, one can successfully describe the system
characteristics. Power DC/DC converters usually possess DC input and
DC output. Consequently, some parameters such as PF and THD are not
available to describe the characteristics of power DC/DC converters.

Energy storage in power DC/DC converters has been paid attention to
since long time ago [11]. Unfortunately, there is no clear concept how to
describe the phenomena and reveal the relationship between the stored en-
ergy and the characteristics of power DC/DC converters [12]. In this paper,
we have theoretically defined a new concept - Energy Factor (EF), and
investigated the relations between EF and the mathematical modeling for
power DC/DC converters. EF is a new parameter in power electronics and
DC/DC conversion technology, which noticeably differs from the traditional
concepts such as PF, efficiency η, THD, and RF. Energy Factor and the sub-
sequential parameters: Energy Factor for variation of stored energy (EFV
and EFV D), pumping energy (PE), stored energy (SE), variation of stored
energy (VE) in continuous conduction mode (CCM) and variation of stored
energy (VED) in discontinuous conduction mode (DCM), can illustrate the
system stability, reference response, and interference recovery. This investi-
gation is very helpful for system design and prediction of DC/DC converters
characteristics.
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4.1 Continuous conduction mode (CCM)

All power DC/DC converters have pumping circuit to transfer the energy
from the source to some energy-storage passive elements, e.g., inductors and
capacitors. The pumping energy (PE) is used to count the input energy
during the switching period T . Its calculation formula is:

PE =

Z T

0
V1i1(t)dt = V1I1T. (34)

The stored energy in an inductor isWL =
1
2LI

2
L, the stored energy across

a capacitor is WC =
1
2CV

2
C .

Therefore, if there are nL inductors and nC capacitors, the total stored
energy in a DC/DC converter is

SE =

nLX
j=1

WLj +

nCX
j=1

WCj . (35)

The most powerful DC/DC converters consist of inductors and capaci-
tors. Therefore, we define the capacitor-inductor stored energy ratio (CIR)
[12]:

CIR =

nCP
j=1

WCj

nLP
j=1

WLj

. (36)

Another factor is the energy losses in a period T , EL = Ploss × T . We
can define the efficiency η to be

η =
PE −EL

PE
. (37)

The current flowing through an inductor has variations (ripple) ∆iL
causing variations of stored energy in an inductor

∆WL =
1

2
L(I2L−max − I2L−min) (38)

= L
IL−max + IL−min

2
(IL−max − IL−min) = LIL∆iL (39)

where IL−max = IL +∆iL/2 and IL−min = IL −∆iL/2.
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The voltage across a capacitor has variations (ripple) ∆vC , variations of
stored energy across a capacitor

∆WC =
1

2
C(V 2C−max − V 2C−min) (40)

= C
VC−max + VC−min

2
(VC−max − VC−min) = CVC∆vC (41)

where VC−max = VC +∆vC/2 and VC−min = VC −∆vC/2.
In the steady state of CCM, the total variation of the stored energy is

V E =

nLX
j=1

∆WLj +

nCX
j=1

∆WCj . (42)

4.2 Discontinuous conduction mode (DCM)

In the steady state of DCM, some of the minimum current and/or voltage
values become zero. We define the filling coefficients mL and mC to describe
the discontinuous situation. Usually, if the switching frequency f is high
enough, the inductor’s current has a triangular waveform. It increases and
reaches Imax during the switching-on period kT , and decreases during the
switching-off period (1−k)T . It becomes zero at t = t1 before next switching-
on in DCM. The waveform is shown in Fig. 13 (a). The time t1 should be
kT < t1 < T , and the filling coefficient mL is

mL =
t1 − kT

(1− k)T
(43)

where 0 < mL < 1. It means the inductor’s current can only fill the time
period mL(1− k)T during the switch-off. In this case, Imin is equal to zero
and the average current IL

IL = Imax[mL + (1−mL)k] (44)

and
∆iL = Imax. (45)

Therefore,

∆WL = LIL∆iL = LI2max[mL + (1−mL)k]. (46)

We define, analogously, the filling coefficientmC to describe the capacitor
voltage discontinuity. The waveform is shown in Fig. 13 (b). Time t2 should
be kT < t2 < T , and the filling coefficient mC is

515



mC =
t2 − kT

(1− k)T
(47)

where 0 < mC < 1. It means that the capacitor’s voltage can only fill the
time period mC(1− k)T during the switch-off. In this case, Vmin is equal to
zero and the average voltage VC is

VC = Vmax[mC + (1−mC)k] (48)

and
∆vC = Vmax. (49)

Therefore,

∆WC = CVC∆vC = CV 2max[mC + (1−mC)k]. (50)

Figure 13: Discontinuous inductor current and capacitor voltage.
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We consider a converter working in DCM, which usually means that only
one or two, but not all storage elements have a voltage/current discontinuity.
We use the parameter V ED to present the total variation of the stored
energy:

V ED =

nL−dX
j=1

∆WLj +

nLX
j=nL−d+1

∆WLj +

nC−dX
j=1

∆WCj +

nCX
j=nC−d+1

∆WCj (51)

where nL−d is the number of discontinuous inductor current, and nC−d is the
number of discontinuous capacitor voltages. We have other papers to discuss
these cases. This formula form is same as equation (42). For convenience,
we use equation (42) to cover both CCM and CDM except for some cases
of a special necessity.

4.3 Energy Factor

The input energy in a period T is PE = Pin×T = V1I1×T . We now define
the Energy Factor (EF) as the ratio of stored and pumping energy:

EF =
SE

PE
=

SE

V1I1T
=

mP
j=1

WLj +
nP

j=1
WCj

V1I1T
. (52)

We also define the Energy Factor for the variation of stored energy (EFV )
as the ratio of the variation of stored energy and pumping energy:

EFV =
V E

PE
=

V E

V1I1T
=

mP
j=1
∆WLj +

nP
j=1
∆WCj

V1I1T
(53)

Energy Factor EF and variation Energy Factor EFV can be used to
describe the characteristics of power DC/DC converters. The applications
are listed in the next sections.

5 Applications of the parameters

5.1 Power efficiency η

We can use these parameters to describe the characteristics of DC/DC con-
verters. Usually most analysis applied in DC/DC converters assume the in-
put power to be equal to the output power, Pin = Po or V1I1 = V2I2, so that
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pumping energy is equal to output energy in a period PE = V1I1T = V2I2T .
It corresponds to the efficiency η = V2I2T/PE = 100%. If the load is a pure
resistive one, R, V2 = I2R, the voltage transfer gain of a DC/DC converter
is

M =
V2
V1
=

I2R

V1
. (54)

Particularly, power losses always exist during the conversion process.
They are caused by the resistance of the connection cables, resistance of
the inductor and capacitor wire, and power losses across the semiconductor
devices (diode, IGBT, MOSFET and so on). We can divide them into the
resistance power losses Pr, passive element power losses Pe and device power
losses Pd. The total power losses

Ploss = Pr + Pe + Pd. (55)

Therefore,

Pin = PO + Ploss = PO + Pe + Pe + Pd = V2I2 + Pe + Pe + Pd. (56)

So that Pin > Po and the efficiency η = V2I2T/PE < 100%. If the load
is a pure resistive one, R, V2 =

√
POR =

√
ηPinR, the voltage transfer gain

of a DC/DC converter is

M =
V2
V1
=

√
ηPOR

V1
(57)

5.2 System stability

After investigation we have found that all existing power DC/DC converters
are stable, and have the condition EF > EFV . If EF ≤ EFV , it means
that variation is reaching 100% or higher, and the converter intends to be
unstable.

5.3 Time constant τ of a power DC/DC converter

The time constant τ of a DC/DC converter is a new concept to describe the
transient process of a DC/DC converter. In the presence of power losses it
is defined as:

τ =
2T ×EF

1 +CIR
(1 + CIR

1− η

η
) =

2

1 + CIR

SE

V1I1
(1 + CIR

1− η

η
). (58)
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This time constant is independent of the switching frequency f (or period
T = 1/f). It can be used to estimate the converter responses for a step
function and impulse interference.

5.4 Damping time constant τd of a power DC/DC converter

The damping time constant τd of a DC/DC converter is a new concept to
describe the transient process of a DC/DC converter. In the presence of
power losses it is defined as:

τd =
2T ×EF

1 + CIR

CIR

η + CIR(1− η)
=

2

1 + CIR

CIR/η

1 + CIR 1−η
η

SE

V1I1
(59)

This damping time constant is independent of the switching frequency
f . It can be used to estimate the oscillation responses for step function and
impulse interference. The ratio ξ is

ξ =
τd
τ
=

CIR

η(1 + CIR 1−η
η )

2
. (60)

6 Transfer function of power DC/DC converters

A DC/DC converter usually has two or more energy-storage elements. The
time constant τ and damping time constant τd are used to form the transfer
function of a power DC/DC converter describing its characteristics with a
second-order differential operation for a small signal analysis. The voltage
transfer gain of the DC/DC converter is M = V2/V1. The transfer function
of the DC/DC converter can be modelled as

G(s) =
M

1 + sτ + s2ττd
=

M

1 + sτ + ξs2τ2
(61)

whereM is the voltage transfer gain V2/V1, τ the time constant (58), τd the
damping time constant (59), τd = ξτ .

Using this mathematical model of power DC/DC converters, it is easy
enough to describe the characteristics of power DC/DC converters. In order
to verify this theory, we will use two converters to demonstrate the charac-
teristics of power DC/DC converters and applications of the theory.
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6.1 Buck converter

Fig. 5 (a) shows a Buck converter with the conduction duty k [9,10]. The
components values are the same as in Sect. 3.1 and there are some power
losses, described by the inductor resistance rL = 4 Ω. We then obtain V2 =
11.4 V, I2 = IL = 1.14 A, Ploss = I2LrL = 1.14

2 × 4 = 5.2W , I1 = 0.455 A,
which gives

PE = V1I1T = 0.91 mJ, WL =
1
2LI

2
L = 0.162 mJ

WC =
1
2CV

2
C = 3.9 mJ, SE =WL +WC = 4.06 mJ,

EF = SE
PE =

4.06
0.91 = 4.463, CIR = 3.9

0.162 = 24

EL = Ploss ∗ T = 5.2 ∗ 50 = 0.26 mJ, η = PE−EL
PE = 0.714

τ = 2T×EF
1+CIR (1 + CIR1−η

η ) = 189.3µs, τd =
2T×EF
1+CIR

CIR
η+CIR(1−η) = 56.6 µs.

Since EF > EFV , this converter is stable. The power transfer efficiency
η = PO/Pin = 13/18.2 = 71.4%. Since ξ = τd/τ = 0.299 > 0.25, the
transfer function of this Buck converter has two poles (−s1 and −s2) that
are located in the left-hand half plane (LHHP):

G(s) =
M

1 + sτ + s2ττd
=

pk/ττd
(s+ s1)(s+ s2)

(62)

where
s1 = σ + jω and s2 = σ − jω

with
σ =

1

2τd
=

1

113.2µs
= 8.83 kHz (63)

and

ω =

p
4ττd − τ2

2ττd
=

√
42857.5− 35834.5

21428.76
=

73.8

21428.76µ
= 3.911 krad/s,

(64)
p = 0.714M = pk = 0.285.

The step function response in the time-domain is

V2(t) = 11.4[1− e−
t

0.000113 (cos 3911t− 2.26 sin 3911t)] V. (65)

The step function response (transient process) has an oscillation charac-
ter with the damping factor σ and frequency ω and is shown in Fig. 14.
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Figure 14: Step function response of a Buck converter with rL = 4 Ω.

Figure 15: Impulse response of a Buck converter with rL = 4 Ω.
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The impulse interference response in the time-domain is

∆V2(t) = 4.52Ue
− t
0.000113 sin 3911t (66)

where U is the interference signal. The impulse response (interference re-
covery process) has an oscillation character with the damping factor σ and
frequency ω, and is shown in Fig. 15.

6.2 Super-Lift Luo-Converter

Fig. 12 shows a Super-Lift Luo-Converter with the conduction duty k [9,10,14-
18]. The components values are V1 = 20 V, f = 50 kHz (T = 20µs),
L = 100µH, k = 0.5, C1 = 2500µF, C2 = 800µF, and R = 10 Ω. There
are some power losses described by the inductor resistance rL = 0.12 Ω.
We then obtain V2 = 57.25 V, I2 = 5.725 A, I1 = 17.175 A, IL = 11.45
A, Ploss = I2L × rL = 11.452 × 0.12 = 15.73 W, VC1 = V1 = 20 V,
VC2 = V2 = 57.25 V. It is operating in CCM, the parameters are

PE = V1I1T = 20× 17.175× 20µ = 6.87mJ,
WL =

1
2LI

2
L = 0.5× 100µ× 11.452 = 6.555 mJ,

WC1 =
1
2C1V

2
C1 = 0.5× 2500µ× 202 = 500mJ,

WC2 =
1
2C2V

2
C2 = 0.5× 800µ× 57.252 = 1311 mJ,

SE =WL +WC1 +WC2 = 1817.6 mJ,

EF =
SE

PE
=
1817.6

6.87
= 264.6

CIR =
1811

6.555
= 276.3

EL = Ploss ∗ T = 15.73 ∗ 20 = 0.3146 mJ,
η =

PE −EL

PE
= 0.9542

τ =
2T ×EF

1 + CIR
(1 + CIR

1− η

η
) = 38.168× 14.26 = 544.35 µs,

τd =
2T ×EF

1 + CIR

CIR

η + CIR(1− η)
= 38.168× 20.3 = 774.93 µs.

Since EF > EFV , this converter is stable. Its time constant τ = 0.544 ms
and damping time constant τd = 0.775 ms = 1.42τ (ξ = 1.42). The transfer
function of this converter has two poles (-s1 and -s2) that are located in the
left-hand half plane (LHHP):
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Figure 16: Step function responses of Super-Lift Luo-Converter with rL =
0.12 Ω.

Figure 17: Impulse responses of Super-Lift Luo-Converter with rL = 0.12 Ω.
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G(s) =
M

1 + sτ + s2ττd
=

M/ττd
(s+ s1)(s+ s2)

(67)

where
s1 = σ + jω and s2 = σ − jω

with
σ =

1

2τd
=

1

1.55s
= 0.645 Hz (68)

and

ω =

p
4ττd − τ2

2ττd
=

√
1686400− 295936

843200
=

1197.2

843200µ
= 1.3985 krad/s,

(69)

1p
4τd/τ − 1

=
1√

5.69853− 1 =
1

2.1676
= 0.461,

M = 3x0.9542 = 2.8626.

The step function response in the time-domain is

V2(t) = 57.25[1− e−
t

1.55 (cos 1398t− 0.461 sin 1398t)] V (70)

The step function response (transient process) has an oscillation charac-
ter with the damping factor σ and frequency ω and is shown in Fig. 16.

The impulse interference response in the time-domain is

∆V2(t) = 0.923Ue
− t
1.55 sin 1398t (71)

where U is the interference signal. The impulse response (interference re-
covery process) has an oscillation character with the damping factor σ and
frequency ω, and is shown in Fig. 17.

7 Experimental results for power DC/DC conver-
ters

To verify the analysis, calculation, and simulation given in the previous
sections, we constructed the test rig to complete some experiments. The
results are listed in the following subsections.
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7.1 Buck converter

The circuit diagram corresponds to Fig. 5 (a), and the components values
are same to those in Sect. 3.2. There are some power losses described by the
inductor resistance rL = 1.5 Ω. We then obtain the experimental resultsfor
the step response and impulse response shown in Figs. 18 and 19. We can
find out that the experimental results are identical to the simulation results
in Figs. 8 and 9.

Figure 18: Step function response of a Buck converter with rL = 1.5 Ω
(experiment).

Figure 19: Impulse response of a Buck converter with rL = 1.5 Ω
(experiment).
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7.2 Super-Lift Luo-Converter

The circuit diagram corresponds to Fig. 12, and the components values are
same to those in Sect. 6.2. There are some power losses described by the
inductor resistance rL = 0.12 Ω. We then obtain the experimental results
for the step response and impulse response shown in Figs. 20 and 21. We
can find out that the experimental results are identical to the simulation
results in Figs. 16 and 17.

Figure 20: Step function responses of Super-Lift Luo-Converter with rL =
0.12 Ω (experiment).

Figure 21: Impulse responses of Super-Lift Luo-Converter with rL = 0.12 Ω
(experiment).
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8 Conclusion

Mathematical modeling of power DC/DC converters is a historical problem.
The traditional mathematical modelling is not suitable for complex structure
converters due to a dramatic increase in the order of a corresponding dif-
ferential equations. We have to search other way to establish mathematical
modelling for power DC/DC converters. This paper offers a mathematical
model (71) generally adequate for power DC/DC converters. Their parame-
ters are determined by completely new concepts: Energy Factor (EF) and
subsequential parameters.

Since traditional parameters such as efficiency (η), power factor (PF),
THD, and RF cannot present the characteristics of power DC/DC convert-
ers, the authors are the pioneers to define Energy Factor (EF) and other
parameters to describe characteristics of power DC/DC converters. Us-
ing these parameters allows one to demonstrate all characteristics of power
DC/DC converters. Two typical converters, Buck converter and Super-Lift
Luo-Converter, are employed to perform these parameters, and satisfactory
simulation and experimental results are obtained. It means that the Energy
Factor (EF) and other parameters are very helpful in Power Electronics and
DC/DC conversion technology.
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