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Abstract

The head-on reflection of normal shock waves from a concrete-
supported plate was investigated numerically. The computer simu-
lation of the collision process, based on a code developed by us, uti-
lizes the mass, momentum and energy conservation equations, supple-
mented by relations for the velocity, compressive strain and equation
of state. The differential equations and conservations laws are used
for the shock wave propagation treatment using the finite difference
approach for the second order space-time equations. In order to elim-
inate the singularity in vicinity of the shock wave front, the artificial
viscosity approach has been used. Results obtained by the simulation
include, among others, the time and space dependence of the pressure
and the velocity both in the gaseous phase and solid medium. Further-
more, the relationship between the characteristic concrete compressive
strength and its ability to sustain shock wave dynamic loading, impor-
tant for the concrete structures design, has been obtained numerically.
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1 Introduction

The process of normal shock-waves collision with a concrete wall is of consid-
erable importance from both the theoretical and engineering points of view.
The ability to predict the overall picture of the stress field for a concrete wall
of prescribed physical properties, exposed to shock waves, is important for
designing the walls. The numerical simulation of shock-wave collision, reflec-
tion and transmission may also contribute to the investigation of concrete
wall behavior in the compressed state. From an industrial standpoint it is
necessary to estimate the minimal width and mechanical properties of the
concrete wall that can withstand shock-waves of given intensity. Such infor-
mation is vital for designing protective shielding for people, as well as civil
and military structures. The numerical scheme and the computer code for
the shock-wave propagation and interaction problem have been developed
in the context of the present investigation.

Normal shock wave interaction with solid walls can be divided into two
main categories: head-on reflection from rigid solid walls and flexible solid
walls. The reflection from the rigid wall was first investigated by [1] and
[2]. [3], [4] and [5] have extended the topic by permitting the rigid solid
wall to move. [6] and [7] examined the head-on reflection from a rigid solid
porous wall. Head-on reflection from a stationary linear elastic solid was
explored by [8] and [9] that took into account the possibility of stationary
solid wall deformation. The head-on reflection from a stationary porous
flexible wall has been studied by [10], [11] and [12]. A solid plate, supported
by a deformable damping system, interacting with the head-on shock-wave,
was described by [13]. The subject was appended significantly by Mazor and
Ben-Dor [14-18] who examined, for the first time, both experimentally and
theoretically, the normal head-on shock-wave collision with elastic nonlinear
materials such as rubber and sponge, subjected to strong deformations. In
the theoretic field, the pessure field equations for the gaseous domain and the
stress field equations for the solid domain have been developed and solved
numerically. In addition to the above-mentioned contribution, the analytical
expression for the shock-wave emergence localization in the solid phase has
been obtained.

Our investigation, dedicated to the study of the reflected shock wave in
the gaseous phase and the shock wave propagation inside the concrete of a
given stress-strain relation, has a twofold purpose:
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1. The better understanding of the shock wave interaction with a concrete
rod.

2. The developing and testing of the numerical simulation code, devoted
to the study of the shock wave propagation in concrete medium.

This problem is essentially one-dimensional from the physical standpoint;
hence we decided to choose the 1D numerical solution that fits the problem
under consideration. We would like to mention that all papers, referenced
in this section, utilize the same 1D approach.

Some further results refer to the concrete specimen behavior (velocity
and stress distributions) during the shock wave propagation.

2 Theoretical background

Figure 1: Schematic illustration of the problem under consideration: a) prior
to the head on collision; b) immediately after the head on collision.

The simulated system we are going to deal with is represented schematically
in Fig. 1. A concrete rod (of initial length Lc and cross-sectional area
Ac), covered by a rigid flat plate (having mass Md and cross-section Ag),is
supported at its rear by the end wall of the shock tube. A shock wave of
Mach number Ms, that propagates in a gas, hits the plate. As a result
of the sudden pressure increase, the flat plate accelerates and compresses
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the concrete rod that supports it. Subsequently, the reflected shock wave of
Mach numberMr is reflected back to the gas domain and a transmitted shock
wave St is propagated into the concrete specimen. The incident shock-wave
Mach number is defined as Ms = Vs/a1, where Vs is a shock-wave velocity
and a1 is the sound speed.

As an expansion of the specimen is limited only at the rear end (along
the x-axis) and there are no constraints along the y- and z-axes (towards
the shock tube walls), the only uni-axial stress compression (σy = σz = 0
and �y = �z 6= 0, where �i and σi are the strain and the stress in the i-th
direction respectively) should be taken into account.

The simulation model of the interaction process is based on the following
assumptions:

1. The model is nonstationary and one-dimensional.

2. The gas is an ideal fluid, i.e., inviscid (µ = 0) and thermally non-
conductive (k = 0).

3. The gas behaves as a perfect gas, i.e., its equation of state is P = ρRT
and its internal energy, e, is given by e = CvT , where P , ρ, and T
are the gas pressure, density, and temperature, respectively, Cv is its
specific heat capacity at a constant volume and R is its specific gas
constant.

4. The gravitational forces are neglected in both the gaseous and the solid
phases.

5. The compressed material is a uniform solid phase in which the me-
chanical properties are related to its structure and to the material
properties.

6. The friction forces acting on the external surfaces of the concrete rod
are neglected.

7. The stresses, which develop in the concrete rod, are uniformly distrib-
uted inside any cross-sectional area and normal to the cross-section.
Therefore, the cross-sectional area remains planar throughout the de-
formation stages of the concrete rod.

8. The concrete rod does not buckle but is only compressed.
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3 The governing equations

The governing equations, based on the above assumptions, are developed
using a Lagrangian approach (for details see [15]).

For the gaseous domain the governing equations are:
mass conservation:

∂

∂t

³
ρg(hg, t)

∂x(hg, t)

∂hg

´
= 0, (1)

gas velocity:

Ug(hg, t) =
∂x(hg, t)

∂t
, (2)

linear momentum conservation:

∂Ug(hg, t)

∂t
= −Ag

∂P (hg, t)

∂hg
(3)

energy conservation:

∂e(hg, t)

∂t
= −P (hg, t)∂Vg(hg, t)

∂t
(4)

where e(hg, t) = CvT (hg, t) is the internal energy
and the Vg, the specific volume (Vg = 1/ρg).

The equation of state:

P (hg, t) =
RT (hg, t)

Vg(hg, t)
. (5)

When the lagrangian approach is utilized, every mass element may be
recognized by a number h which indicates its location in the x − t-plane.
Usually, this number identifies the mass element position at some time. The
definition of h is based on the mass conservartion law. Let us consider a flow
streaming along a duct of a constant cross-section area. The flow direction,
therefore, may be chosen as the x-axis direction. When the value h = 0 is
assigned to some reference segment in the duct, h simply expresses the mass
confined in the duct between the section h and the segment of reference:

h =

Z x(h,t)

x(0,t)
ρAdx

In the equations (1 - 5) hg is the Lagrangian variable for the gaseous
phase:
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hg =

Z x(hg,t)

x(0,t)
ρgAgdx

For the concrete region the governing equations are:
mass conservation:

∂

∂t

³
ρc(hc, t)

∂S(hc, t)

∂hc

´
= 0 (6)

Figure 2: A diagrammatic sketch of a mass element prior to its deformation
and thereafter.

To define a particle velocity inside the concrete let us consider a mass
element dm which at t = 0 was at x = X0 and had a width dX0 (see Fig.
2). As a result of the concrete deformation , this mass element moves to a
new position, S, and its width is changed to dS. It is evident from Fig.2
that S = X0 + ξ where ξ is the magnitude of the displacement along the
X-axis. The concrete cell velocity may therefore be defined as,

Uc(hc, t) =
∂S(hc, t)

∂t
or Uc(hc, t) =

∂ξ(hc, t)

∂t
(7)

The extension ratio in the x-direction, λx, expresses the ratio between
the mass elements widths after and before deformation:

λx(hx, t) =
∂S(hc, t)

∂X0

With the addition of ∂S(hc,t)
∂X0

= ∂S(hc,t)
∂hc

∂hc
∂X0
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and the definition of the Lagrangian variable for the concrete specimen, hc,
i.e.,

hc =

Z S(hc,t)

S(0,t)
ρcAcdS

expression for the λx may be rewritten as:

λx(hc, t) = ρ0cAc
∂S(hc, t)

∂hc

where the superscript 0 indicates pre-deformation values. For a material
under compressive loads 0 < λx < 1 and for a material under tensile loads
λx > 1. When the material is load free (i.e., stress free conditions) λx = 1.
The strain in the x-direction can be simply obtained from the definition
�x = λx − 1, i.e.,

�x(hc, t) = ρ0cAc
∂S(hc, t)

∂hc
− 1 (8)

For a mass element dm where dm = ρcAdS = ρ0cAdX0, Newton’s second
law implies

∂

∂t
(dmUc) = − ∂Fx

∂X0
dX0

where Fx is the normal force acting on a given cross section at time
t. Substituting (7) with the definition of the mass element into the above
expression results in,

ρ0cAc
∂2ξ(hc, t)

∂t2
= −∂Fx(fc, t)

∂X0

The above expression represents the conservation of momentum of the
concrete cell. By introducing the stress in the x-direction,

σx(hc, t) =
Fx(fc, t)

Ac

the above expression becomes

∂2ξ(hc, t)

∂t2
= − 1

ρ0c

∂σx(hc, t)

∂X0

However, since

∂σx(hc, t)

∂X0
=

∂σx(hc, t)

∂hc

∂hc
∂X0

=
∂σx(hc, t)

∂hc
ρ0cAc

7



one obtains

∂2ξ(hc, t)

∂t2
= −Ac

∂σx(hc, t)

∂hc

But as shown in Fig. 2, S = X0+ ξ, hence the equation of motion of the
concrete is,

∂2S(hc, t)

∂t2
= −Ac

∂σx(hc, t)

∂hc
or

∂Uc(hc, t)

∂t
= −Ac

∂σx(hc, t)

∂hc
(9)

Equations (1) to (9) comprise a set of nine governing equations with ten
independent variables, namely, ρg - the density in the gaseous phase, P - the
pressure in the gaseous phase, T - the temperature in the gaseous phase, Ug

- the velocity of the particles m the gaseous phase x - the displacement in
the gaseous phase, ρc - the density in the concrete domain, σx - the normal
stress (in the x-direction) in the concrete region, Uc - the velocity of the
concrete particles, �x - the strain (in the x-direction) in the concrete and, S
- the displacement in the concrete.

Consequently, in order to have a closed set of equations, which, in prin-
ciple, could be solved, there is a need for an additional equation. The addi-
tional equation is the constitutive relation which is known more commonly
as the stress-strain relation, i.e.,

σx = σx(�x)

This equation dictates how materials, including concretes, will respond
to a sudden load imposed by a head-on colliding shock wave.

The stress-strain relation used in the simulation is derived from the Mod-
ified Scott Model ([19]) based on the experimental results for high stress con-
crete ([20, 21]) in a dynamic load. This model is applicable to the concrete
strength up to 100 MPa. The model is governed by the following equations:

|σ(�)| =


fc

h
2 |�||�0| −

³
�
�0

´2i
for |�| ≤ |�0|

fc

h
1− 0.15

|�1−�0| |�− �0|
i
for |�0| < |�| < |�1|

(10)

(where fc is a compressive strength) and illustrated in Fig.3.

8



Figure 3: Stress-strain curve that governs the Modified Scott Model for a
concrete subjected to a compressive dynamic load.

The descending branch of the stress-strain curve of concrete is a region
where a disruption of concrete begins. The failure is caused by the develop-
ment of splitting cracks in the direction of the applied load and due to the
development of an inclined shear band. When the developed stress in some
region of the simulated specimen exceeds fc and � falls into the descending
region of the strain-stress curve (|�0| < |�| < |�1|), we assume the failure of
the rod to sustain the loading.

The above listed set of ten governing equations must be solved simulta-
neously for the following boundary conditions,

Ug(hg = Hg, t) = Uc(hc = 0, t)

Uc(hc = Hc, t) = 0. (11)

The first condition implies that the velocities of the gaseous phase and
the concrete at the interface between them are identical, and the second
one implies that the rear face of the concrete rod which is supported by the
shock tube end-wall, see Fig. 1, has a zero velocity at all times. The value of
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Uc(hc = 0, t) which appears in the right hand side of (11) can be evaluated
by the following equation,

∂Uc(hc = 0, t)

∂t
=

2A

∆hg +∆hc
(Pg(hg = Hg, t)− |σx(hc = 0, t)|) (12)

4 The numerical scheme

Equations (1) to (9) form a set of partial differential equations that cannot
be solved analytically. Hence, a numerical scheme, capable of handling flow
discontinuites has been developed. In order to eliminate the singularity in
proximity of the shock wave front, the artificial viscosity approach has been
applied. The idea of overcoming the spurious oscillation problem in the
hydrodynamic equations by introducing an artificial viscosity to damp the
amplitude was proposed by [22] in the context of the Euler equations. To do
this we introduce an artificial dissipative term whose form and strength are
such that the shock transition becomes smooth, extending over a small num-
ber of intervals of the space variable. In their original work, Von Neumann
and Richtmyer proposed the following expression for the viscosity term (for
the gas domain):

qg =


(Cg∆hg)2

Vg(hg ,t)

³
∂Vg(hg,t)

∂t

´2
, ∂Vg(hg ,t)

∂t < 0

0 , ∂Vg(hg ,t)
∂t ≥ 0

(13)

where Cg is a nondimensional constant which controls the simulated
shock wave thickness in the gas domain. The commonly used values of Cg

lie in the range between 1.5 and 2, spreading the shock over 3-5 intervals
of ∆hg. From (13) one can see that the artificial viscosity term becomes
significant only in the vicinity of the shock wave front. This term should
be added to the linear momentum conservation (3) and state (5) equations,
yielding

∂Ug(hg, t)

∂t
= −Ag

∂

∂hg
(P (hg, t) + qg(hg, t)) (14)

and

R
∂T (hg, t)

∂t
= −(P (hg, t) + qg(hg, t))

∂Vg(hg, t)

∂t
(15)
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In the same way the linear momentum conservation equation (9) may be
appended by the artificial viscosity term:

∂U(hc, t)

∂t
= −Ac

∂

∂hc
(|σx(hc, t)|+ qc(hc, t)) (16)

where the artificial viscous pressure term for the concrete is:

qc =


(Cc∆hc)2

λx(hc,t)

³
∂λx(hc,t)

∂t

´2
, ∂λx(hc,t)

∂t < 0

0 , ∂λx(hc,t)
∂t ≥ 0

(17)

where Cc is similar to Cg in (13) and responsible for the simulated shock
wave width in the concrete sample. Values of Cc also fall into the interval
1.5-2, spreading the wave to 3-5 intervals of ∆hc.

The choice of the C is inspired by the considerations of stability and
smoothness of the numerical solution. It was found numerically that the
value C=1.8 provides the optimal stability of the solution both in the gas and
the solid (concrete) continuum. The same value of C was found elsewhere
([15]) for the normal shock wave interaction with a rubber rod.

The array of nine equations after the artificial viscosity term modification
becomes a set of finite difference second order space-time equations.

5 Results and Discussion

5.1 Initial conditions

The simulated system consiss of the three main parts:

1. The space filled with air at 1 atm pressure (prior to the beginning of
the shock-wave propagation). The initial length of this space is L0 and
the base area is Ag.

2. The flat plate of mass Md (negligibly small comparing to the mass
of the concrete specimen) and area Ag, covering the main concrete
sample.

3. The concrete rod of initial (uncompressed) length Lc, and base area
Ac, supported at the rear by the rigid wall.

The present simulation has been performed for the following set of pa-
rameters in order to investigate the concrete sample behaviour after the
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head-on shock wave collision: L0= 9 m , Ag/Ac=2, Lc= 1 m, the concrete
sample initial density ρ=2400 kg/m3, fc= 40 MN/m2, �0=0.002, �1=0.003,
initial temperature T=300 K. The shock wave, generated in the gaseous
region of the shock-wave facility has a Mach number Ms=3.5

5.2 Compression waves to a shock wave transformation con-
ditions inside a concrete rod

When the incident shock-wave exhibits a head-on collision with the front
edge of a concrete rod, a compression wave Ct is transmitted into the con-
crete region. [23] showed that each pulse in the wave propagates at a velocity,
c given by,

c = Uc + λxc0

where c0, the shift rate of the disturbance, is determined by [1]

co =

s
1

ρ0c

∂σx
∂λx

(18)

where c0 isn’t a local sound speed in the concrete. [1] have shown that the
proper expression for the local sound speed is given by

a = c0
ρ0c
ρc
.

Therefore, the local sound speed is equal to c0 only in uncompressible mate-
rials. It can be seen from (18) that the stress-strain relation of the concrete
determines whether or not compression waves, generated at early stage in
the compressed concrete rod, propagate slower or faster than those gener-
ated at later times. When pulses, produced at early time of the compression
process, propagate at a smaller velocity than those produced later, the for-
mation of a shock wave in the rod is forthcoming. [23] showed that the
condition for the compression waves, Ct, to converge to a shock wave, St,
depends on the stress-strain relation of the solid and must fulfill the following
two requirements:

1. ∂σ/∂λ > 0 (Rise in distortion causes rise in stress).

2. (∂σ/∂λ)2 > (∂σ/∂λ)1 for λ2 < λ1 (Rise in distortion causes rise in
(∂σ/∂λ).
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It is important to note that the above-mentioned transformation con-
ditions are fulfilled for the material under consideration. Therefore, in the
present case, a transmitted shock wave, St, propagates through the concrete
rod as shown in Fig.1(b).

5.3 Simulation results

The pressure distribution in the gaseous domain just after the shock wave
initialization (t=0.33 msec, solid line) and following the head-on reflection
from the plate (t=3.61 msec, dot line) is depicted in the Fig. 4. One can
easily see two distinctive pressure jumps: behind the falling wave front ,Ms

(from the atmosferic pressure until 15.2 atm), and in the rear of the reflected
wave front ,Mr(untill 80.0 atm), see also Fig. 1.

Figure 4: The gas pressure distribution in the gaseous domain of the shock
wave facility before and after the head-on collision with concrete supported
flat plate.

The transmitted shock wave, St (see Fig. 5a), created by the shock wave
collision, is propagating through the concrete sample towards the rear wall
of the shock-wave tube (region (I)), raising the stress behind the wave front
(region (II)). Following the reflection from the tube end, the reflected shock
wave, Sr (Fig. 5b) returns back (to region (III)), raising the stress again.
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Figure 5: A sketchy illustration of the reflection of the shock wave travelling
through a concrete rod: a prior to the reflection from the back wall of the
shock tube; b after the reflection.

Figure 6: The stress distribution inside the concrete rod illustrating the
shock wave propagation before and after reflection from the back wall of the
facility.
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This process is illustrated quantitatively in Fig. 6. The transmitted
shock wave prior to collision (solid line) with the end wall (t=2.85 msec)
elevating stress behind the front until 17 MPa approximately. Just after the
reflection of this shock wave (dot line) from the rear wall (t=3.13 msec) stress
builds up again, achieving the value of 31 MPa. It must be underscored,
that both the stress values in the rod (17 MPa and 31 MPa) are smaller
than fc = 40 MPa and therefore the concrete rod sustains the shock wave
dynamic loading in this case (Ms = 3.5).

It would be interesting to examine the velocity of the flat plate as a
function of time (see Fig. 7). After the head-on collision of the incident shock
wave the plate accelerates to the end wall direction, reaching, after the short
time, a constant velocity of 175 cm/s. The reflected shock wave, Sr, causes
the plate to change its traveling direction to the opposite direction and to
attain a constant velocity of -175 cm/s while moving leftwards (negative
velocity). A rarefaction wave, transmitted later to the gaseous domain,
changes the plate movement direction again.

Figure 7: The flat plate velocity as a function of time.

The variations in the gas pressure, acting on the flat plate and depicted
in Fig. 8 are almost identical to the case of shock wave collision with a rigid
wall ([15]).
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Figure 8: The gas pressure acting on the front of the flat plate as a function
of time.

Figure 9: Dependance of the characteristic concrete compressive strength,
fc, on the Mach number, Ms, of the shock wave that causes the concrete
specimen destruction.

In addition to the foregoing simulation results, it should be particulary
emphasized, that the developed numerical scheme is dedicated mainly to an
exploration of dependence of the concrete compressive strength, fc, on its
ability to sustain the dynamic pressure loading applied by the shock-wave
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of a given Mach number, Ms. The simulation results are shown in the Fig.
9. Each calculated point represents the smallest compressive strength of the
concrete specimen needed to sustain the collision with the shock-wave of
given Ms. In order to simulate real collision conditions for the blast wave,
we took the ratio Ag/Ac = 1. Polynomial fit shows that the relationship
between the minimal required compressive strength, fc and Ms may be
interpolated by a simple parabolic function.

6 Final remarks and conclusions

1. Numerical investigations of the interaction of the normal shock waves
with a concrete supported plate have been conducted.

2. The dependence of the characteristic concrete compressive strength,
fc, on the Mach number, Ms, of the shock wave that causes the con-
crete specimen destruction, was found numerically.

3. The next part of our research will be dedicated to the study of shock
wave interactions with concrete, shielded by different materials (like
aluminium honeycombs). Such exploration will be beneficial in protec-
tive shielding design for people, and for civil and military structures.
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