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Abstract

We study localization-delocalization transition in quantum Hall
systems with a random field of nuclear spins acting on two-dimensional
(2d) electron spins via hyperfine contact (Fermi) interaction. We use
Chalker-Coddington network model, which corresponds to the projec-
tion onto the lowest Landau level. The inhomogeneous nuclear polar-
ization acts on the electrons as an additional confining potential, and,
therefore, introduces additional parameter p (the probability to find a
polarized nucleus in the vicinity of a saddle point of random potential)
responsible for the change from quantum to classical behavior. In this
manner we obtain two critical exponents corresponding to quantum
and classical percolation. We also study how the 2d extended state
develops into the one-dimensional (1d) critical state.
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1 Introduction

Celebrated quantum Hall effect (QHE) is realized in a 2d electron gas sub-
jected to a strong perpendicular magnetic field and a random potential [1, 2].
The uniqueness of this phenomenon is in high precision of the plateaux in
the Hall component and very rich physics in the interplateau transitions [3].
Here we will study the influence of the nuclear spin fields [4] on the critical
exponents in QHE.

The physics of the random potential in quantum Hall systems could
be roughly divided into spin independent and spin dependent (spintron-
ics) electron scattering processes. Magnetic impurities perturb the QHE
transport very strongly and will not be considered here. Recently sharply
growing attention was attracted to the physics of the hyperfine interactions
in the QHE. It was suggested theoretically [4] and observed experimentally
[5, 6] that the underlying nuclear spin structure can provide the microscopic
information on the 2d electron wave functions and provide strong influence
on the precision and other parameters of a QHE system.

2 Random Hyperfine fields and nuclear spin re-
laxation rates

The interaction between electron and nuclear spins in heterojunctions under
QHE conditions is due, usually, to the hyperfine Fermi contact interaction
[7, 4]. This interaction is represented by the Hamiltonian:

Ĥint = −γn~�Ii · �He, (1)

where γn is the nuclear gyromagnetic ratio, �Ii is the nuclear spin and �He is
the magnetic field on the nuclear site, produced by electron orbital and spin
magnetic moments:

�He = −gβ
X
e

8π

3
ŝeδ

³
�re − �Ri

´
. (2)

Here �re is the electron radius-vector, ŝe is the electron spin operator, β =
e~/m0c is the Bohr magneton, g is the electronic g-factor and �Ri is the
nucleus radius-vector.

It follows from Eqs. (1) and (2), that once the nuclear spins are po-

larized, i.e. if
DP

i
�Ii

E
6= 0 , the charge carriers spins feel the effective,

time-dependent hyperfine field Bhf = Bo
hf exp (−t/T1) (T1 is a nucleus relx-

ation time) which lifts the spin degeneracy even in the absence of external
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magnetic field. In GaAs/AlGaAs one may achieve the spin splitting due to
hyperfine field of the order of the Fermi energy [5, 6].The inhomogeneous nu-
clear polarization acts on the electrons as additional (to the scalar potential
of the impurities) confining potential Vhf = −µBBhf [8].

The nuclear spin polarization, once created, remains finite for macroscop-
ically long times. Intensive experimental studies [5, 6] of this phenomenon
in QHE systems have provided a more detailed knowledge on the hyper-
fine interaction between the nuclear and electron spins in heterojunctions
and quantum wells. It was observed that the nuclear spin relaxation time
is rather long (up to 103 sec) and the hyperfine field acting on the charge
carriers spins is extremely high, up to 104G [5].

Iordanskii et al. [9] have studied nuclear spin relaxation taking into
account the creation of spin-excitons [10] in the flip-flop process. The energy
for the creation of a spin-exciton can be provided by the long range impurity
potential in a process, where the electron turns its spin while its center of
orbit is displaced to a region with lower potential energy.

Figure 1: Long-range electrostatic potential, created by a remote impurity,
provides the energy to reverse the electron spin in the nuclear-electron flip-
flop process.

As shown in Fig. 1, the overlap of the initial and final location of the
electron wave functions, centered at x1 and x2 respectively, is: exp[−(x1 −
x0)

2/aH − (x2 − x0)
2/a2H ]. Here x0 is the nuclear position. Nuclear spin

relaxation by the conduction electron spin in the vicinity of a potential
fluctuation is effective when the nuclear spin is positioned in the region of
the overlapping initial and final states of the electron wave function.
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The energy conservation in the spin-exciton creation process can be writ-
ten in the form:

µBgH0 +E(p) = x∇U.
This expression defines the gradient of electric potential caused by the impu-
rity, sufficient to create a spin-exciton during a flip-flop process. The proba-
bility of finding such a fluctuation is exponentially small: exp[−(∇U)2/2 <
∇U2 >].

The momentum p of the spin-exciton is small and therefore the expan-
sion in p can be performed everywhere in the final expression for electronic
density of states (DOS):

DOS =
Z
ImG(E, x, x)dx = e−S. (3)

Here S depends on the following combination of physical parameters:

S∝|g|(µHEc)

R”(0)

L2

a2H
, (4)

R”(r) ≡ d2R(r)/dr2 reaches the maximum, usually, at r = 0.
A complete expression for the nuclear depolarization rate from the golden

rule formula at T=0 [9] is given by

T 11∝ν↑ (1− ν↓)
1

2π2

Z
ImG (k, ω) δ (ω − ωN)Ln

¡
k2
¢
e
−k2
2 d2kdω,

where ν↑, ν↓ are filling factors for the electrons with spin up and spin down,
respectively, n is the highest occupied Landau level and Ln(k

2/2) are the La-
guerre polynomials. Here the system of units is used, where a2H = c~/eH = 1
and ~ = 1.

The nuclear relaxation time depends strongly on the vicinity to the im-
purity and its sign [3]. The presence of the impurity (long range poten-
tial) provides the necessary energy conservation in the spin-exciton creation
process leading to the nuclear spin relaxation. We can, therefore, expect
the following scenario: nuclear spins being polarized by some external field
will then relax differently depending on whether they are close to maxima or
minima of the scalar potential created by impurities. Therefore, they should
affect strongly tunneling of electrons through saddle-point potential.

When random potential varies smoothly (its correlation length is much
larger than the magnetic length as, e.g., in GaAs heterostructures) a semi-
classcial description becomes relevant: electrons move along the lines of
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constant potential. When two equipotential lines come close to each other
(near a saddle point) tunneling is feasible. In this paper we investigate how
this picture will be affected by strong nuclear polarization. We find that
scaling of the localiztion length is modified (Eq. (12)), which is the main
result of this work.

3 Network model

In the network model [11], electrons move along unidirectional links forming
closed loops in analogy with semiclassical motion on contours of constant
potential. Scattering between links is allowed at nodes in order to map
tunneling through saddle point potentials. Propagation along links yields a
random phase φ, thus links are presented by diagonal matrices with elements
in the form exp(iφ). Transfer matrix for one node relates a pair of incoming
and outgoing amplitudes on the left to a corresponding pair on the right; it
has the form

T =

µ p
1 + exp(−π�) exp(−π�/2)
exp(−π�/2) p

1 + exp(−π�)
¶
. (5)

In order for a system to be invariant, on average, under 90◦ rotation
the transmission and reflection at the next neighbor node are interchanged,
i.e. the transfer matrix has the same as in Eq. (5) form with a parameter
�0 = −� [11]. In order to obtain this relation one simply interchanges Z3 and
Z4 (see Fig. 2) and brings a new transfer matrix to the form of Eq.( 5) .
We therefore describe scattering at the nodes indicated in Fig. 1 by circles
with transfer matrix T(�) and at the nodes indicated by boxes with T(−�).

The node parameter � is a relative distance between the electron energy
and the barrier height. It is related to the physical quantities descibing the
system

� ≡ (E − (n+ 1
2
)E2 − V0)/E1, (6)

where E1 measures the ratio between saddle-point paramters and magnetic
field, E2 is a distance between Landau levels at strong magnetic fields, and
V0 is a reference point of a scalar potential [[12]]

E1 =

"
Ω

½
γ2 +

³ωc
4

´2¾1/2 − 1
4
Ω2 −

³ωc
4

´2#1/2
, (7)
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where Ω = (14ω
2
c + (Uy − Ux)/m)

1/2, γ = (Uy + Ux)/2mΩ, and Ux,y are the
ciurvatures of the saddle-point potential. The oscillator frequency E2 is

E2 =

"
Ω

½
γ2 +

³ωc
4

´2¾1/2
+
1

4
Ω2 +

³ωc
4

´2#1/2
. (8)

It is easy to see from Eq. (5) that the most "quantum" case (equal
probabilities to scatter to the left and to the right) is at � = 0, in fact
numerical calculations [11] show that there is an extended state at that
energy. Numerical simulations on the network model are performed in the
following way: one studies system with fixed widthM and periodic boundary
conditions in the transverse direction. Multiplying transfer matrices for N
slices and then diagonalizing the resulting total transfer matrix , it is possible
to extract the smallest Lyapunov exponent λ (the eigenvalues of the transfer
matrix are exp(λN)). The localization length ξM is proportional to 1/λ.
Repeating calculations for different system widths and different energies it
is possible to show that the localization length ξM satisfies a scaling relation

ξM
M

= f

µ
M

ξ(�)

¶
. (9)

In the QHE the thermodynamic localization length ξ(�) ∼ |�|−ν and ν =
2.5 ± 0.5. This is the main result [11] and it is in a good agreement with
experimental data for spin-split resolved levels [13], numerical simulations
using other models [14] and semiclassical argument [15, 16] that predicts
ν = 7/3.

It is possible to model classical percolation using CC model as well. It
was shown [17] that when the relative height of the barriers fluctuate in the
infinite range, the percolation becomes classical (no tunneling is allowed) and
classical percloation exponent νcl = 4/3 is retrieved. On the other hand,
when the fluctuations are finite, their width acts as irrelevant parameter
[18, 19, 20] and does not affect ν.

4 Critical behavior in presence of nuclear polar-
ization

In the present work we modify CC model in the following way. We expect
that the presence of a polarized nucleus near a saddle point of the scalar
potential will modify a tunneling parameter � in Eq. (3) by changing V0 to
V0 ± Vhf . More, we also expect that due to different relaxation rates (in
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the vicinity of impurities of different signs) the following scenario can be
realized: nuclei situated near different types of saddle point (nodes of the
model) will be polarized in opposite directions, breaking, therefore, isotropy
of the system. We model this situation by introducing a parameter 0 ≤ p < 1
describing the probability that there is a polarized nucleus near particular
saddle point. Due to the effect of high hyperfine fields descibed above, we, as
a rough approximation, can expect that the barrier becomes "infinite", i.e.
the transfer matrix at the node is now a unit matrix. On the model language
it means that the quasiparticle stays on the same horizontal link (see Fig.
2), and isotropy of the model is therefore broken. Obviously, when p = 1 a
2d system is broken intoM one-dimensional chains, and, due to the fact that
there is no backscattering, all states are extended independent on energy �
and system widthM . We, therefore, expect the smallest Lyapunov exponent
λ = 0, in contradistinction to the "ordinary" 2d extended state, where λ is
finite, and infinite thermodynamic localization length is recovered only after
finite size scaling. In this sense p = 1 case is close to a 1d metal found
for a dirty superconductors with broken time-reversal and spin-rotational
symmetries [21].

Figure 2: Network model with missing nodes.

Before we present numerical results, let us discuss the possible form for
the scaling of the renormalized localization length. Now, when we have
"wiped out" on average a fraction p of the nodes, a quasiparticle should
travel larger distance (times 1/(1 − p)) in order to experience the same
number of scattering events. Therefore, naively, one would expect that the
effective system width is now M(1− p)−1 and the scaling is
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ξM
M

= (1− p)−1f
µ

M

ξ(�)

¶
. (10)

On the other hand, we should take into account that the "missing" node
actually does not allow the quasiparticle to propagate in the transverse di-
rection (we have chosen the system in such way that, if there is no scattering,
the quasiparticle stays on the same horizntal link). Usually for CC model
and its generalizations the typical value of the renormalized localization
length for the extended state is of the order of 1, meaning that in the ex-
tended state the quasiparticle is able to traverse the system of the widthM .
Therefore, in the present situation we could expect even larger value of ξM
in the extended state, i.e. (1− p)−ν dependence with ν > 1.

Figure 3: Renormalized localizaton length at critical energy � = 0 as function
of the fraction of missing nodes p for different system widths. Solid line is
the best fit 1.24(1 − p)−1.3. Dashed line is the fit with "naive" exponent
ν = 1.

In order to find both critical exponents we start by studying a p-dependence
for � = 0, corresponding to the development of a 2d extended state into a 1d
extended state. The results for system widths M = 16, 32, 64 are presented
on Fig. 3, allowing the following fit
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ξM
M

= (1− p)−1.3f(0), (11)

where f(0) is the value of the renormalized localization length in the ex-
tended state � = 0 for the standard CC model (p = 0). This value for the
critical exponent is suspiciously close to the classical percolation exponent
νcl = 4/3. We also show visibly worse fit of the data with the "naive" critical
exponent ν = 1.

We next use the value ν found in Fig. 2 and study numerically renormal-
ized localization length for various � 6= 0 and p < 1. All our data collapse
on one curve with abscissa in the form M/ξ(�) where thermodynamic lo-
calization length diverges as ξ ∼ �−νq with quantum percolation exponent
νq ≈ 2.5. The results of the scaling are presented on Fig. 4.

Figure 4: Data collapse for all energies �, system widthsM and all fractions
p 6= 1 of missing nodes.

We argue that one can understand the appearance of the classical perco-
lation exponent in Eq. (7) by considering a quasiparticle on the standard CC
model deeply into the localized regime. In this case localization length ξM
is M -independent, meaning that a quasiparticle does not "feel" the bound-
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aries of the system, and its thermodynamic localization length ξ = ξM .
Therefore, a quasiparticle travels on the perimeter of the classical cluster of
the typical size ξ. Then by increasing the fraction p of the missing nodes,
we increase the size of the classical cluster, actually making it infinite as p
approaches 1. Therefore, (1− p) acts as energy in the classical percolation
problem, explaining the value 1.3 ≈ 4/3.

Another option to explain the appearance of the value ν ≈ 1.3 is the
effect of directed percolation. By making a horizontal direction preferential,
we have introduced an anisotropy into the system. Our result practically
coincides with the value of critical exponent for the divergent temporal cor-
relation length in 2d critical nonequilibrium systems, described by directed
percolation models [22]. It probably should not come as a suprise if we rec-
ollect that each link in the network model can be associated with a unit of
time [23].

Finally, all numerical data we have obtained supports the following scal-
ing relation

ξM
M

= (1− p)−νclf(M�νq), (12)

We stress that this is the first result for the network models to produce
both quantum and classical percolation exponents form the same data. To
summarize, we have studied the influence of nuclear spins on the localization-
delocalization transition in quantum Hall systems. We have found that the
fraction p of polarized nuclei acts as a relevant parameter, leading to a new
scaling relation for the localization length (Eq. (12)).

One of us (V. K.) appreciates valuable discussions with Alexander Mirlin,
Yuval Gefen, Baruch Horovitz, Yshai Avishai and Ferdinand Evers. I.V.
is gratefull to Mike Pepper, Cavendish, for hospitality during the summer
2005, when part of this paper was accomplished. I.V. acknowledges the
EuroMagNET of FP6, RII3-CT-2004-506-239.

When the work on this paper was in its final stages our coauthor Pro-
fessor Israel Vagner had died after a lengthy and courageous battle with
cancer. We wish to express here our admiration of Isya (the name he was
called by friends and colleagues) for his devotion to physics, inspiration he
had and knew how to ignite in his coworkers, his kindness, his humor and
his incredible optimism. This research was just the first step in a project
studying the interplay between nuclear magnetism and quantum Hall effect,
proposed by Isya. We hope to be able to continue this study, developing
Isya’s ideas.
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