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Abstract

We present a theoretical study of the resonant quantum behavior
for a macroscopic superconducting system interacing with an external
microwave at proper frequency. Here we consider a system described
by a double well potential, a rf-SQUID, in the extremely underdamped
regime. Numerical simulations for resonant phenomena have been per-
formed for this system, whose parameters belong to the range typically
used in the experiments. The dependence of the transition probability
W on the external drive of the system, ., can show three resonance
peaks, in a small microwave frequency range. One peak is connected
with the anticrossing and the other two with the external microwave
frequency v. The relative position and the height of the two lateral
peaks depends on the microwave frequency. This behavior is studied
here for the first time.
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1 Introduction

Josephson devices are convenient instruments to investigate macroscopic
quantum effects [1]. First experiments focused on incoherent phenomena
such as macroscopic quantum tunneling (MQT) [2-4] and energy level quan-
tization (ELQ) [5-7]. Recent experiments have shown a coherent superposi-
tion of distinct macroscopic quantum states in SQUID systems [8-10] under
the action of an external microwave frequency. These results have stimu-
lated many researchers to search for new macroscopic quantum phenomena.
Moreover quantum effects in SQUID dynamics are interesting because of
possible applications to quantum computing, as demonstrated by recent ex-
periments [11].

The main obstacle in order to observe macroscopic quantum phenomena
is the interaction with the environment, since it produces dissipation and it
also induces a finite width iy of quantum levels [12] and resonant phenomena
can occur only if Ay is small compared to the energy difference between
levels.

In this paper we study the behavior of a rf-SQUID device, characterized
by a double well potential (Fig. 1)in the small viscosity limit, corresponding
to v < Tn (here T is the tunneling frequency) [13], referred as the ex-
tremely underdamped regime. Up to now, this regime has been investigated
for some Josephson devices [7-9,14,15]. In the present paper we focalize on
the interaction between a macroscopic quantum system (the rf-SQUID) and
an external microwave, for frequencies close to resonant conditions.

The probability of a transition under the potential barrier decreases ex-
ponentially by decreasing energy of the quantum state (energy is referred
to the bottom of the left potential well). Tunneling can be experimentally
observed only if it occurs from a level close to the barrier top and in this
case the transition probability, as a function of the external parameter ¢,
can present one or three peaks, as we will show in the following,.

A further requirement to observe the quantum tunneling phenomenon is
that the number of levels n is not too large, so that no crowding of levels
happens. We assume also that the number of levels in the potential well
is large enough, so that the motion of a particle with energy close to the
top of the potential barrier can be considered quasiclassical. In this limit
it is possible to use approximations, as reported in [16]. Moreover in the
quasiclassical limit the density of levels close to the barrier top increases, but
in the considered case this effect is not significant since numerical factors are
of the order of % Inn [16]. Furthermore near to the barrier top, repulsion of
levels is relevant and hence the equation for the system wave functions has to
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be solved exactly. Finally the tunneling probability of a particle through the
potential barrier depends very strongly on the particle energy E and on the
energy difference between neighboring levels. The position and the width of
each level depends on the external parameters of the system, especially on
the ¢, value. A sketch of the double well potential for the rf-SQUID studied
here is reported in Fig. 1.

A
U(o)

>

Figure 1: A sketch of an rf-SQUID double-well potential U(y), with two
minima located at %" and J¥". ¥1op 18 the position of the potential
maximum. The coordinates ¢y, pq, 3, ¢4 are the “turning points" of energy
Ey, . In the same way it is possible to define turning points for energies E,,
Ey, Er, Er. We study the case E = Fjp, that is the ground state in the

left potential well.

Out of resonant conditions, energy levels are localized in each well. On
the contrary, when two levels in different wells have the same energy, a
coherent superposition of distinct states occurs and a gap appears between
the energy levels. As a consequence the two levels have an energy tunnel
splitting A, and the wave functions spread over the two wells, so that two
non-degenerate states with energies Fy, and Ey, appear, as shown in Fig. 2.

In order to study the tunneling process from these energy levels, it is
necessary to populate them through the application of a microwave of proper
frequency v = w/2m and amplitude Z, acting on the ground state of the left
well. Even a small amplitude of the external microwave frequency can cause
an essential change in the population of excited states and therefore can
produce a large effect in the tunneling probability.
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Figure 2: The four essential energy levels considered in this study. All the
quantities are referred to the barrier top. Here Ey, and Ey, are the energies
of the levels. Ej is the first level in the left potential well below Ey, and Eg
is the first level in the right potential well below Ey,.

We have studied the rf-SQUID dynamics in these particular conditions
by the means of numerical calculations. Our study shows that in presence
of a microwave the transition probability can present one or three peaks,
in the extremely underdamped regime. This effect can be observed only in
a small range of microwave frequency and external flux. In these ranges
the frequency and the flux should be varied in very small steps in order to
have enough resolution. Out of the optimal range or if a too large step is
used, only one peak, due to the anticrossing, can be observed. For a fixed
value of microwave frequency v, the transition probability curve W from one
potential well to the other one (as a function of the external parameter ¢,)
can present three maxima. The three peaks curve is a new prediction. One
maximum is connected with the anticrossing, and its position is indepen-
dent on the external microwave frequency and depends only on the device
parameters. The two lateral peaks are due to the interaction of the external
microwave frequency with the two levels with energies Ey,, Ey,, and their
height and position vary with the v value.

In the following sections microwave induced resonant phenomena will be
discussed by using the density matrix formalism [17].
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In Sect. 2 we discuss the transition probability function in the presence of
external resonant microwave frequency, in Sect. 3 we show how to calculate
levels position and transition matrix elements, in Sect. 4 we determine the
energy spectrum in the vicinity of the crossing point and, finally, in Sect. 5
we show the results of numerical calculations for the transition probability
W as a function of the external parameter ¢,,.

2 Transition probability function in presence of
resonant microwave frequency

In the zero approximation for the system interaction with the thermal bath,
the hamiltonian describing the rf-SQUID, in the presence of an external
microwave with amplitude Z and frequency v = w/2m, is

h? 02

A ((10 — @x)2
2M D2

Th
0= +Uo 5 + B cose| + 26 cos(wt)yp (1)

where M is the “mass" of the Josephson junction defined as

h 2
M=|—) C 2
(3) )
C' is the junction capacitance and e is obviously the electron charge. Fol-
lowing a common practice [4], the dimensionless variable ¢, is obtained by
referring the magnetic flux to ®p/2 and normalizing it to ®o/2m, where

by = “Tﬁ is the quantum flux. In Eq. (1) quantities Uy and [;, are free
parameters of the system and are defined as

2
Uy = (%) %] 3)
5y = T @

L and I. are the inductance and the critical current of the rf-SQUID, re-
spectively. Here we consider the case when Uy and S are constant, while
©,, changes.
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Our considerations are valid for any potential U(y) having the form
shown in Fig. 1 in the vicinity of the “turning points" ¢;. In this case the
frequency of the classical motion in the overturned potential is defined as

82U
Q,,\/M ) )

and ¢,,;, is the coordinate corresponding to a minimum of the considered
potential well. In order to satisfy the conditions for the extremely under-
damped regime it should be hry < h£2),.

We stress that rf-SQUID parameters are such that there are two levels
with energies Ey,, Ey,, close to the top of the barrier, that can be considered
as belonging to both potential wells simultaneously, as shown in Fig. 1.

In this picture the dissipation is accounted for by the effective resistance
R.f¢ defined in the RSJ model for the junction [18]. The R.;s accounts
for different processes, as a consequence it describes dissipation [3, 18], but
it is also related to the quasi-particle tunneling [19, 20|, to the normal and
the subgap resistance [21]. A bigger Ry implies a better insulation and a
smaller width of the levels. Here we consider an rf-SQUID whose Josephson
junction presents a large value of resistance Ry, so that the condition

En—PBp
h
is satisfied, where 7;,7v, are the widths of levels having energies Fy,, Ey,
respectively (the exact expression for v, is given in the following). De-
tailed considerations on the processes that lead to the viscosity limit in
the Josephson Junction tunnelling dynamics are discussed elsewhere (see
refs.[18, 22, 23]). Viscosity can be introduced also with the help of the
Hamiltonian (see Eq. (1)) where the “particle" interacts with an infinite
number of oscillator, that is the thermal bath (see refs.[1, 13]).
To quantitatively describe the resonant tunneling induced by the exter-
nal microwave, we use the following system of equations [12] in order to
determine the density matrix elements pjc

/. gcosw)Z(w\mmxp () o e

> 71,72 (6)

~tmlolfyexp [i (22 ) o pz'n) ")
FL Wi, -3 > (Wi + W) o
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Here j, m, f, n are the labels for the considered levels, E;, Ey,, Ef, E, are
their energies and ¢ is the time.

The matrix elements WJZZL entering in Eq. (7) are defined exactly in
Appendix A and C. They are nonvanishing provided that

| (Em — Ej) — (En — Ey) | < 7Y, (8)

If this condition is satisfied and the temperature is low enough, the non-
vanishing terms W7 ;n of the transition probability matrix have the following
expression:

hao -
W <1 +tanh 2]{;BT> N(UJ) (9

|GleF m) (Fle=F In) + (jle= % m)(fle % n)

wim =

~—

where

E,-E;+E,-F

and N (@) is defined as

N (@) = %coth <2Z‘;’T> (11)

where kp is the Boltzmann constant. We suppose that all eigenfunctions
are real. Only the four non-diagonal elements of the density matrix

0 0 f
Plis Pfys PO Po

2

are nonzero, and they are related by the expressions

o =05)" el = (%) (12)

In the presence of an external microwave frequency also the two diagonal
elements pﬁ and pﬁj are Non-zero.

Here we suppose that the temperature 1" is such that kgT < hf), and
it is of the order of the energy difference, so that kg1 ~ (Ey, — Ef,). Nu-
merical calculations have been performed for T' = 50 mK, that is a typical
value for our experiments, but it is worth noting that the behavior is the
same for all the temperatures that guarantee the sample is in the quantum
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regime. If these hypotheses are satisfied, from Eq. (7) we obtain the rate
equations

apY iT i

81{1 T T2 cos(wt) <0‘90|f1>6( ' )pg + nglgcngcz a le% (13)
8p0 iT (_iEfQI*Eo t)
=2 = o) Olelfa)e T o+ WS o —varf,

where the widths ~q, 75 of levels with energies Ey , Ey, are given by the
following expressions

Lfof Lf Rf
o= g (WhE Wil v wil) (14)
N S Lf Rf
T2 = g (Wfllf; + Wiy, +Wsz2>

In order to study the resonant quantum tunneling phenomenon, only
five energy levels (Ey,, Ey,, Eo, EL, ERr) are essential quantities. Ey is the
energy of the ground state in the left potential well, £y is the first level in the
left potential well below Ef,, ER is the first level in the right potential well
below Ey,, and finally Ey and Ey,. These energy levels vs. the external
parameter ¢, are shown in Fig. 2 (all the energies are referred to FEy).
The microwave frequency v is supposed to be close to the frequencies Ey, /h
and Ey,/h. Here we have considered the case Ey, is also the ground state
of the left potential well (EFr=EFjp), while in the right well there are many
more levels, not involved in the described process. The tunneling transition
probability between two states in different wells decreases very quickly for
states below the barrier top, such as e 2™, where n is the number of states
counted from the barrier top [22, 23]. As a consequence it is possible to
neglect transitions into lower energy levels in the right potential well.

If these hypotesis are satisfied, the solutions of Egs. (13) are:

pg)cl = Aflei(wﬂlh’_ﬂ>t+3flei(ww)t (15)

Ep-Fo), (o),
0

) (O
Pf, = Bpe + Ape
where coeflicients Ay, , Ay,, By,, By, are defined as follows
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- -1
_ z Ep — Lo . WJ910f2WJ920f1
Afl = —£<0‘tp‘f1> w = 7 _1'71+w_ Eflr Eo iy
z Ep-E VALY
- _ 2 o 1 /2 2 f1
Afz - 46<0|‘p‘f2> w 7 1Yo + w_ Efzr Bo i |
iwee, A
_ f1fe M S
B, = Al (16)
w— == —im
11700
B _ ZWf2 flAfl
f2 = Ly —Fo ;
e
The diagonal elements pf and ,0 ?> of the density matrix can be found

by solving the following rate equatlons

8pf1 . r Bp—Fo, JEn—Fo \7
f t . ' l
5 = 5 cos(wt) | o (filel0)e (™ )—Po <0|so|fl>< )
f1 f: f
Wfllf;ph B 271pf1 (7
op: iT [ 20 )t 2= )|
8?2 3 Cos(wt) sz<f2|<P|0> ( ' ) — pl* (Ol f2)e ( r )

f2 fi
sz f1 pfl o 2’ng

Equations 17 and 18 completely describe the dynamics of the process.
Their solutions are respectively:

i(Efszh)t 7i(Ef27Ef1)t

PRt = Pl +Fe\ T ) +Fe " (19)
By, —Ey ; = .

PRt = Pf2+D1€Z( ' ) +Die ( ) (20)

The expressions for F; and D; are given in Appendix A, and these
coefficients determinate the value of the oscillating part of the tunneling
probability W. By substituting Eqgs. (19) and (20) inside Egs. (17) and
(18), we obtain the expressions of the quantities bﬁ and [)2 as following;:
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It is evident that these two equations are maximized when

w= —Eflh Fo or w = —Ef2h EO,
that is to say when resonant conditions are satisfied. Now we can introduce
the transition probability W from the left to the right potential well. Ob-
viously W is a function of the external parameter ¢, and the final goal of
this paper is to compute this quantity. The transition probability is given
by the expression

R f R f
Ww=Ww fllpfl +W f22pf2 (23)

where, in the low temperature limit, here considered, from Eq. (9) we obtain
the expressions

2(Ey, — Eg) )
Wil = — g | (RIET AP (24)
e
2(Ey, — Eg |
W};J{; = (Rf2ffe2 ) | <R | 61@/2 | f2> |2 (25)

while the expressions for pﬁ and pg are given in Egs. (19) and (20) respec-
tively.

It is worth noting that any change of the external parameter ¢, leads
to a redistribution of wave functions relative to energies Ef , Ey, between
the left and the right potential well, so that transition matrix elements and
width of levels are functions of the external parameter .. To complete our
considerations we will compute the levels position and the transition matrix
elements as a function of the external parameters, as shown in the next
section.

3 Levels position and transition matrix elements

As we have seen before, a necessary condition to resolve multiple peaks is
that the experimental linewidth of states (v, 79) is smaller than A (A >
fryi, Brys). In Fig. 1 @1, 09,93, 94 are the “turning points", that are the
solutions of the following equation

U<<P172,3,4) =F (26)

where F is the energy value. In Fig. 1 the points @[, ©2"" are the
coordinates corresponding to the minima of potential U(y) and the point

¢10p 18 the coordinate corresponding to the maximum of the potential U(¢p).
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For energy values F close to the top of the barrier, the wave function ¥ can
be expressed as

1 .
ME-U@)A

v = G! %+/\/2M (E —U (9))dy

in the left potential well

o= G AD_a ((LH)MUDY (e — ¢10p)) (27)

+GTAD i ((1 — i) (2MU)Y4(p — sotop)>

close to the barrier top

) B ‘ . P4
v o= Gt TP sin Z+/\/2M(E—U(go))dgo

in the right potential well

In Eqs. (27) Dy is the parabolic cylinder function [24], G is a normalization
factor while quantities A and B are numerical factors (they are defined in
the following). The other quantities are defined as

Utop = U((ptop) (28)
1 2
o= - <2—2> (29)
i P=Ptop
op — F
A = \/QMUl% (30)
1

Near to the top of the potential barrier we use exact solutions of the Schrédin-
ger equation for the considered system, whereas in the vicinity of the points
©1, ¢4 we use the well known method of outgoing in complex plane [25].
As result the expression for the levels positions is exact and it depends on
the parameter \ (that is adimensional). Coefficients A and B, introduced
in Egs. (27), are defined by imposing boundary conditions for these three
expressions. By matching coefficients in the right potential well we obtain
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B
A= ST o

P4

TA Am A G 2 .
exp | ==~ +Z —i—zln (X) —i—z/d(p\/ZM(E—U((p))
P3
By matching coefficients in the left potential we obtain two equations.

The first one allows to calculate the position of the levels near the barrier
top in the case of small viscosity limit

(74dw2M T T00) — | dior/TI(E U(@)))

3 !

+ (14 exp(—mA) 2

- COS (x +3+35mn(3)+ 74d<p\/2M (E—-U(p)) + ?d(p\/ZM (E — U(@)))

P3 #1
=0
(32)
In Eq. (32) phase shift y is defined by the equation
; —7mA\/4
2 1+ e(=mA)

where I'(z) is the Euler gamma function and the phase x can be presented

in the form
Ao (1 > A A
=39(3) 3 (e o) o)

k=0

In Eq. (34) ¢(x) is the Euler function and

b (%) = —C—2In2 = —1.96351 (35)

The second equation allows to calculate the value of the coefficient B as
follows
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B =exp (%)‘) (1+exp (—77)\))1/2

-sin<x+%+%1n(§)+fdcp\/2M (E-Ulp +fdgo\/2M (E-U(p)
P1 ¥3

—sm(fdgo\/QM (E—-Ul(p deP\/QM (E—-U(y )))]

$1 ¥3
(36)
In order to obtain two non-degenerate levels (Ey,, Ey,) close to the barrier
top the parameter A should be A\ > 1. In such a case, the normalization
factor G can be approximated as

¥2 Pq
h dp dp

G2==2 B?
2 w/l\/QM(E—U(go))JF l\/QM(E—U(SO))

(37)

Moreover, since we consider the case the energy E is close to the barrier
top, it is possible to use expressions with an explicit energy dependence (by
using perturbation theory over the quantity (Ui, — E) with separation of
the singular terms):

JE2de\/2M (E = U(p)) = [2* dp\/2M (Usep — U(9))

— (Utop — \/7 " d < =i (sotop—;gtxo/plfj;—so‘l)) (38)
- Wiy~ B) 3 [ (%) 4]
J£1dp\/2M (E = Ulp f” do\/2M (Usop — U(g))
— (Uiop — E) \/g f;ip dv <\/(Utop1U(<p)) a (¢—<Ptojl\/(ii?;4_¢)> (39)

— (Utop — E) \/¥ [ln <%) " %]
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In Egs. (38), (39) quantities ¢;, ¢, are defined as

P = o (BE= Utop)
Py = ¢y (B= Ut0p)

Energies Er, ERr of states ¥y, Wi (defined in Sect. 2) can be found by
using Eqgs. (32), (38), (39), provided that Uy, Ug are referred to the barrier
top. In this case wavefunctions Wy, Ui can be described by using the
quasiclassical approximation, so that we find

, sin (% + fdgo\/ZM (B — U(‘P)))

#1

YT @ an@E o) o
| sin (g + [ E= U(cp)))
_ 4
YT G @i ) .
where the factors G;, and Gg are
hf d
2 . Nn 4
GL = 3 Z V2M (E - U(y)) “2)
P4
2 _ E dyp
“h = 3 J VM (E—U(2) )

Finally the wave function Wy of the ground state can be taken in the form

(2pmuiny e (‘ / dv’\/2M(U(sa)—U(go1"i")))
——,; €

winzn
x1/4

Ty = (44)

main min

where Ufg” = U(p1") and ¢’y" are the coordinates corresponding to the
position of the left and right minimum in the potential U(¢p)

(3_U> ~ 0
O p=pTi"

Ulp) = U@ +U75" (0 — o5 + ...
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4 The energy spectrum in the vicinity of the cross-
ing point

In order to better describe the energy spectrum near to the crossing point
we introduce the functions ®; and ®5, defined as:

P2

b — /dso%?M(E—U(W)* 2 (1““ G))

®1
Ptop

= / dgo\/QM (Utop = U()) — (Utop — E)

P1
' /‘Ptop dgp ( 1 B \/ thop - 851 )

Utop — U(¢p) (Prop — ©) ( Ui (o — 951))

[ M 21/4
4+ (Utop — F) /| — In
( o ) 2U1 (8(MU1)1/4 ((ptop_gil))

M
2

o)

Pa

vV ()54 - (ptop )

1
. d —
Prop v ( Utop =U(@) (0= 1) ( Ui (64— @))
7 91/4
+ (Utop — E) \/ 2—U1 In (8 (MU1)1/4 (()54 _ ‘Ptop))

Now we suppose that for some value of the external parameters 2, Uy,
B, there is a point characterized by Ep, A\g = A (Ep) (defined in Eq. 30)
such that

1 ™

@1 (Uo, B, 2, Eo, M) + 35X (Ao) = 3t k1 (47)
1 ™

@y (Uo, B, 2, Eo, M) + X (Ao) = 5t ks (48)
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where ki, ko are integer numbers. Equations (45), (46) allow to determine
the external parameter ¢, such that the two energy levels Ey; and Eyy are
closest. Next to this special point, it is possible to use Taylor expansion for
the functions ®; and ®5 and we can write:

1
Qu+3X = Gk +aidp, +Bi0E (49)
1
@y + X = g + mhy + a0, + B20E (50)
where
E=Ey+0E, ¢,=¢+dp, (51)

and the quantities ay, ag, B, By are given in Appendix B.
From Egs. (32), (49), (50) we obtain the equation to calculate the energy
spectrum for two close levels near to the barrier top

1
B1B2(0E)? + cna(6p,)? + (a1By + a28)8¢9,0F — Ze(fﬁ)\) =0 (52)

The solutions of this equation are two hyperboles, as shown in Fig. 3

T i prrrr e mr e P i adadi
E.E

—E_E, ]

1

0.035 4
i

= =—= ‘-\-""‘— -

s ) e —

5 ]

= E
)

0.030 |- 1

anticrossing
1
Lasa asasaslasaias

0.344 0.345 0.346 02347 0348 0.349

Py

Figure 3: Curves Ef, — Eg vs. ¢, and Ey, — Ey vs. ¢, obtained by solving
Eq. (32). All the energies are referred to the barrier top. The horizontal
line is the external field of frequency v, it crosses the energy curves K -
Eg and Ey,-Ep in two points. The vertical line represents the coordinate
corresponding to the anticrossing point. For all the parameters values are:
By =175, C=0.1pF, L =210pH.

228



1
0E = “ 2675, (53)

(@182 + a2B1)0, = (@18, — 02812 (0,)? + BBy exp(—m))|

Note that Eq.(53) gives the position of two close levels as a function of
the external parameter ¢, for any A value. If we consider the case A is a
real parameter in the Eq. (53), hence the splitting of energy levels is small
if we consider the case A > 1. For A=1 from Eq. (30) we obtain

Up —E 1
ne, 2 (54)

The two levels having energies Ey,, Ey, have to satisfy the condition
dE < 182, and this occurs if the parameter exp(—n\) is small, that is true
if \ is of the order of one, so that exp(—7\) is of the order of 1072,

5 Numerical calculations

As we have said before, these resonant quantum effects can be experimen-
tally observed only in a small frequency range and for a device realized with
proper parameters. In this section we suggest a set of rf-SQUID parameters
useful in order to experimentally observe the effect studied here.

For the calculations presented here we consider a temperature T=50 mK
and the following rf-SQUID parameters: [5;=1.75, L=210 pH, C=0.1 pF.
Finally we consider the effective resistance Rcfy=8 M(Q.

In the extremely underdamped limit, the number of peaks of the transi-
tion probability W vs. ¢,, can be three or one depending on the microwave
frequency value v.

It is possible to observe a three peaks curve (see Fig. 4) only in a small
range of frequency and external flux. Moreover it is necessary to use small
steps in order to have a good resolution. This is possible because we are
considering the case the levels are well defined. In this case, one peak (the
central one) is connected with the anticrossing, while the other two peaks
are due to the interaction of the microwave frequency with levels fi, f.
As a consequence, the central peak is fixed in position and height, even if
we change the frequency v, since the anticrossing does not depend on the
external microwave frequency v. On the contrary, the other two peaks have
a shift depending on the frequency. Of course transitions described by these
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peaks occur at values of the external flux ¢, which depend on the microwave
frequency, as shown in Fig. 3. If we represent the external microwave having
frequency v with a horizontal line, it is possible to obtain the three peaks
curve only when the frequency crosses both the energy curves Epy -FEg and
Et,-Ep. This condition has to be satisfied also in the moderate underdamped
regime [26], but in the considered case the levels have a better resolution
since their width is really small.
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Figure 4: Transition probability W vs. ¢, for different values of the external
microwave frequency v. W presents three peaks: the central one is due to
the anticrossing and two lateral ones are due to the microwave frequency
interacting with the two levels close to the barrier top. Curves are obtained
by using the following parameters for the numerical calculations: 5;=1.75,
L=210 pH, C=0.1 pF, and R.fy=8 M.

For calculations presented in this paper we have considered microwave
frequencies ranging from v = w/2r = 25.76 GHz to v =26.69 GHz to ob-
tain three peaks curves. For frequencies not belonging to this interval, the
transition probability is a one peak curve (Fig. 5). The only peak is due to
the anticrossing and does not depend on microwave frequency, so it is fixed
in height and position.

Moreover we have studied the dependence of the peaks on the effective
dissipation described in the RSJ model by the effective resistance R.rr. As
expected [27], by increasing R.s, peaks resolution is enhanced (Fig. 6).
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Figure 5: Transition probability W vs. . Here the W presents only one
peak due to the anticrossing. The plot was obtained by using the following
parameters for the numerical calculations: 5;=1.75, L=210 pH, C=0.1 pF,
and R.rr=8 MQ.
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Figure 6: Transition probability W vs. ¢, for different values of the effective
resistance R.rr. The plot was obtained by using the following parameters
for the numerical calculations: f;=1.75, L=210 pH, C=0.1 pF, v= 25.756
GHz.
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It is possible to observe that the width of central peak is fixed while the
lateral peaks width changes. This is due to the change in level position for
different R.ry values.

Also the §; parameter can be varied in the experiments [8] and therefore
we present some numerical calculations to study the transition probability W
vs.ip, for three different 5, values (see Fig. 7, Fig. 8 and Fig. 9). It is worth
noting that the variation of 5, corresponding to a variation of the rf-SQUID
potential barrier height, here has been obtained by changing only the value
of the inductance L (see Eq. 3), while I, has been kept constant. We have
observed that, when we increase the [3; value, the transition probability
becomes smaller so that it is necessary to increase the ¢, value to observe
the peaks. Again, it is possible to observe that the width of central peak is
fixed while the lateral peaks width changes.

Calculations we have made suggest to choose a Josephson system with
a small capacitance and a S not too large, but definitely greater than 1.
The set of parameters used here seems to be a good compromise to achieve
the experimental observation of the phenomenon.

The experiment can be realized by using the experimental set-up de-
scribed in [7] and measuring the statistical distribution of the switching
value ¢, can be measured by repeating the process many times (about 10%).
From the switching value distribution is straightforward to obtain the escape
rate W and to compare data and theory.
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Figure 7: Transition probability W vs. ¢, for 5;=2.15, L=258 pH, C=0.1
pF, R.;rp=8 M and v=32.818 GHz.
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Figure 8: Transition probability W vs. ¢, for 8;,=1.75, L=210 pH, C=0.1
pF, R.;r=8 M) and v= 25.756 GHz.
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Figure 9: Transition probability W vs. ¢, for f;=1.35, L=162 pH, C=0.1
pF, R.rr=8 M and v= 24.456 GHz.
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6 Conclusions

Results presented here describe the small viscosity limit for the resonant
quantum tunneling for an rf-SQUID, realized with proper parameters. No
fitting parameters have been used to obtain the following physical quanti-
ties: levels position, width of levels, transition probability W from the left
to the right well. These quantities are expressed as a function of the ex-
ternal parameters (like junction capacitance, external current, microwave
frequency and amplitude). It is worth noting that levels essential to study
this phenomenon are placed below the top of the barrier and that the dis-
tance between them is of the order of hf),. The level splitting should be
such that to satisfy two essential conditions: it should be much smaller than
n$), and at the same time it should be large enough to be experimentally
observed.

The transition probability W from the left to the right potential well has
been calculated as a function of the external parameters (they are ¢,, the
microwave frequency v, the effective resistance Reyy, 51). Results obtained
here suggest that the resonant quantum tunneling is a convenient tool to
investigate macroscopic quantum phenomena.

Our study shows that in resonant conditions and in presence of a proper
microwave frequency the transition probability W vs. external parameter ¢,
can show three peaks (Fig. 4). The first is connected with the anticrossing
and the other two are due to the interaction of the microwave frequency with
the two energy levels Ey, Ey,. The relative positions of these two peaks
strictly depend on the microwave frequency and on the external parameter
biasing the rf-SQUID and they disappear for frequency values external to
this small range.

Appendix A

In this appendix we give the explicit expression of quantities D; and Fi,
which appear in Egs. (19), (20) as well as of the matrix elements W3
entering in Eq. (7).

Inserting Egs. (19, 20) into Egs. (17), (18) we obtain two equations
depending on the quantities D1 and F;
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The explicit expression for the transition matrix elements W]{cl ! ]{;2 and W})l (}2
is given below

f1fe T Ef2 — Ef1 Efz — Ef1
= —— |1+ tanh
Wf1f2 Reff62< +tan < 2kpT >> T
(A.5)
Ey — F -
coth (2= ) (Al exo'® |1
Ey,, — F Eq — F E;, — F
woo  _ 77 1 -+ tanh f2 bil f2 11 coth f2 f1
fife 2Reffe2< - tan < kpT o AkpT
(55)

- |0l exp™® [0} f1] exp™% [ f2) + (0] exp™% [0) (fa] exp® [ f2)]

Ey — F
00 __ f: f 00
sz h = exp <_—22kBT 1) Wfl o (A?)

Appendix B
In this appendix explicit expression of quantities a1, ao, 5; and B4, appear-

ing in Egs. (49) and (50) are given. For the potential, given by Eq. (1) we
have

Ptop = Pux + 51 Sin(gotop)

8()01501) - _ 1

890x BL Cos(wtop) -1
ou
Do, —Uo(p — ¢,)

U
Ul = ?0 (/BL COS(SDtop) - 1)

ou, 1 sin(eyop)
— =3, U D
89093 2 L OBL COS(SDtOp) -1
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= Uy [ — (Prop — S%)}

T

From equations (28), (31) we obtain all other derivatives that should be
found for calculation of the quantities 1,2, 31 o

O 2M

oA 2M 1
8901 B UO ﬁ{ﬁL Cos(wtop) -1 (B2)
Uiop — E
|:/8L sin Sptop <1 - th) - (@top - Sox):| - (Qotop - pr)]
ox 1 (1) 5 — 1
IX — Sy ()4 (B.3)
O\ 27\ 2 ; (2k + 1)((2k + 1)2 + \?)

Now by using equations (45), (46), (B.1), (B.3) we obtain the value of all
coefficients ay, ag, 81, Ba.

_ 8(1)1 1 8)( oA
b = T 2NOE (B-4)
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Appendix C

In the present appendix we give the transition matrix elements entering in
the definition of W;TT (see Eq. (9) and Appendix A).

Transition matrix elements between states close to the barrier top can
be calculated in quasiclassical approximation if the parameter A (see Eq.
(27)) is A > 1. Consider first the matrix element (L|(|f1). With the help of
Egs. (27), (40), (41) we obtain

¢2(Eyy) Sin<7r/4+ f d‘P\/(QM(EL_U(SO)))>
@ = goa— [ d i ¢
Crlirn g\ @M (BL=U@)"* @M (B, U()"*
(C.1)
;
sin [ 7/4 + / dp\/2M (Ey, — U(¢)))
e1(Efy)
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that is equal to

(LIl dp

el
2G1GE, ) /@M (Epp —U(9)))

| B © Mdyp
¢ cos ((Efl Ep) /<,01(Ef1L) V2M (Ey, 1, — U(‘P)))

To calculate the last integral we can use the time variable ¢ according to
the classical equation of motion

(C.2)

M [(9p)\>
el - F .
5 ( m) U(e) (C.3)
As a consequence, Eq. (C.2) becomes
Ty /2
1 2w
LICLA) = srrm e (= 4
(LIC] fr) QMGLGEfl / dthos<T1t€> (C.4)
0

where T} is the period of the classical motion in the left potential well with
energy E and / is the number of states between energy levels Ey, and Ef,
plus one. In our case ¢ = 1. The initial value for ¢ is ¢(0) = ;.

P2
Ty =2M

®1

dp
V(2M (E —U(y)))

In the same way we obtain transition the matrix element (R|(|f1).

In Eq. (C.1) ¢,(Ey,) is the first crossing point of the energy level Ey,
in the left well and @y(Ey,) is the second crossing point of the energy level
Ey, in the left well.

In the same way in Eq. (C.2) ¢;(Ey, 1) is the first crossing point of the
energy level Ky in the left well, where Ey, 1, is defined as

Efl + Er
2

Consider now the transition matrix element (fa| ¢|f1). From Eq. (27) we
find

(C.5)

Epr = (C.6)

(2l C111) = s
P2 P4 (0'7)
A dp——S 1+ B. B dp——o=%
J e Tamemey P Be | e Ty
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where ¢ 5 3 4 are the turning points and E here is E' = M By using
Eq. (C.3) we reduce the expression (C.7) to the form
Ti/2 T>/2
h
(fal CI11) = MGG, / dt¢ + By, By, / dt¢ (C.8)
1 2
0 0

In Eq. (C.8) the first integral is taken over the left potential well and the
second one over the right potential well and T3, T5 are the periods of the
classical motion in the left and in the right well respectively.

To improve Eq. (C.9) we should take into account ortogonality of wave-
functions relative to the energies Ey,, Ey, . As result we obtain

Ty /2 Ty /2
1 —Bf Bf T2 / Tl /
=h 12 dt¢ — dt C.9
(f2| CIf1) NG ,Cp, |Tit T ¢ 1T ¢ (C.9)
0 0
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