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Abstract
We present a theoretical study of the resonant quantum behavior

for a macroscopic superconducting system interacing with an external
microwave at proper frequency. Here we consider a system described
by a double well potential, a rf-SQUID, in the extremely underdamped
regime. Numerical simulations for resonant phenomena have been per-
formed for this system, whose parameters belong to the range typically
used in the experiments. The dependence of the transition probability
W on the external drive of the system, ϕx, can show three resonance
peaks, in a small microwave frequency range. One peak is connected
with the anticrossing and the other two with the external microwave
frequency ν. The relative position and the height of the two lateral
peaks depends on the microwave frequency. This behavior is studied
here for the first time.
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1 Introduction

Josephson devices are convenient instruments to investigate macroscopic
quantum effects [1]. First experiments focused on incoherent phenomena
such as macroscopic quantum tunneling (MQT) [2-4] and energy level quan-
tization (ELQ) [5-7]. Recent experiments have shown a coherent superposi-
tion of distinct macroscopic quantum states in SQUID systems [8-10] under
the action of an external microwave frequency. These results have stimu-
lated many researchers to search for new macroscopic quantum phenomena.
Moreover quantum effects in SQUID dynamics are interesting because of
possible applications to quantum computing, as demonstrated by recent ex-
periments [11].

The main obstacle in order to observe macroscopic quantum phenomena
is the interaction with the environment, since it produces dissipation and it
also induces a finite width ~γ of quantum levels [12] and resonant phenomena
can occur only if ~γ is small compared to the energy difference between
levels.

In this paper we study the behavior of a rf-SQUID device, characterized
by a double well potential (Fig. 1)in the small viscosity limit, corresponding
to γ ¿ TN (here TN is the tunneling frequency) [13], referred as the ex-
tremely underdamped regime. Up to now, this regime has been investigated
for some Josephson devices [7-9,14,15]. In the present paper we focalize on
the interaction between a macroscopic quantum system (the rf-SQUID) and
an external microwave, for frequencies close to resonant conditions.

The probability of a transition under the potential barrier decreases ex-
ponentially by decreasing energy of the quantum state (energy is referred
to the bottom of the left potential well). Tunneling can be experimentally
observed only if it occurs from a level close to the barrier top and in this
case the transition probability, as a function of the external parameter ϕx,
can present one or three peaks, as we will show in the following.

A further requirement to observe the quantum tunneling phenomenon is
that the number of levels n is not too large, so that no crowding of levels
happens. We assume also that the number of levels in the potential well
is large enough, so that the motion of a particle with energy close to the
top of the potential barrier can be considered quasiclassical. In this limit
it is possible to use approximations, as reported in [16]. Moreover in the
quasiclassical limit the density of levels close to the barrier top increases, but
in the considered case this effect is not significant since numerical factors are
of the order of 1

2π lnn [16]. Furthermore near to the barrier top, repulsion of
levels is relevant and hence the equation for the system wave functions has to
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be solved exactly. Finally the tunneling probability of a particle through the
potential barrier depends very strongly on the particle energy E and on the
energy difference between neighboring levels. The position and the width of
each level depends on the external parameters of the system, especially on
the ϕx value. A sketch of the double well potential for the rf-SQUID studied
here is reported in Fig. 1.

Figure 1: A sketch of an rf-SQUID double-well potential U(ϕ), with two
minima located at ϕmin

1 and ϕmin
2 . ϕtop is the position of the potential

maximum. The coordinates ϕ1, ϕ2, ϕ3, ϕ4 are the “turning points" of energy
Ef1 . In the same way it is possible to define turning points for energies Ef2 ,
E0, ER, EL. We study the case EL = E0, that is the ground state in the
left potential well.

Out of resonant conditions, energy levels are localized in each well. On
the contrary, when two levels in different wells have the same energy, a
coherent superposition of distinct states occurs and a gap appears between
the energy levels. As a consequence the two levels have an energy tunnel
splitting ∆, and the wave functions spread over the two wells, so that two
non-degenerate states with energies Ef1 and Ef2 appear, as shown in Fig. 2.

In order to study the tunneling process from these energy levels, it is
necessary to populate them through the application of a microwave of proper
frequency ν = ω/2π and amplitude I, acting on the ground state of the left
well. Even a small amplitude of the external microwave frequency can cause
an essential change in the population of excited states and therefore can
produce a large effect in the tunneling probability.
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Figure 2: The four essential energy levels considered in this study. All the
quantities are referred to the barrier top. Here Ef1 and Ef2 are the energies
of the levels. E0 is the first level in the left potential well below Ef2 and ER

is the first level in the right potential well below Ef2 .

We have studied the rf-SQUID dynamics in these particular conditions
by the means of numerical calculations. Our study shows that in presence
of a microwave the transition probability can present one or three peaks,
in the extremely underdamped regime. This effect can be observed only in
a small range of microwave frequency and external flux. In these ranges
the frequency and the flux should be varied in very small steps in order to
have enough resolution. Out of the optimal range or if a too large step is
used, only one peak, due to the anticrossing, can be observed. For a fixed
value of microwave frequency ν, the transition probability curve W from one
potential well to the other one (as a function of the external parameter ϕx)
can present three maxima. The three peaks curve is a new prediction. One
maximum is connected with the anticrossing, and its position is indepen-
dent on the external microwave frequency and depends only on the device
parameters. The two lateral peaks are due to the interaction of the external
microwave frequency with the two levels with energies Ef1 , Ef2 , and their
height and position vary with the ν value.

In the following sections microwave induced resonant phenomena will be
discussed by using the density matrix formalism [17].
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In Sect. 2 we discuss the transition probability function in the presence of
external resonant microwave frequency, in Sect. 3 we show how to calculate
levels position and transition matrix elements, in Sect. 4 we determine the
energy spectrum in the vicinity of the crossing point and, finally, in Sect. 5
we show the results of numerical calculations for the transition probability
W as a function of the external parameter ϕx.

2 Transition probability function in presence of
resonant microwave frequency

In the zero approximation for the system interaction with the thermal bath,
the hamiltonian describing the rf-SQUID, in the presence of an external
microwave with amplitude I and frequency ν = ω/2π, is

H0 = − ~
2

2M

∂2

∂ϕ2
+ U0

"
(ϕ− ϕx)

2

2
+ βL cosϕ

#
+
I~
2e
cos(ωt)ϕ (1)

where M is the “mass" of the Josephson junction defined as

M =

µ
~
2e

¶2
C (2)

C is the junction capacitance and e is obviously the electron charge. Fol-
lowing a common practice [4], the dimensionless variable ϕx is obtained by
referring the magnetic flux to Φ0/2 and normalizing it to Φ0/2π, where
Φ0 =

π~
e is the quantum flux. In Eq. (1) quantities U0 and βL are free

parameters of the system and are defined as

U0 =

"µ
Φ0
2π

¶2 1
L

#
(3)

βL =
2πLIc
Φ0

(4)

L and Ic are the inductance and the critical current of the rf-SQUID, re-
spectively. Here we consider the case when U0 and βL are constant, while
ϕx changes.
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Our considerations are valid for any potential U(ϕ) having the form
shown in Fig. 1 in the vicinity of the “turning points" ϕi. In this case the
frequency of the classical motion in the overturned potential is defined as

Ωp =

s
1

M

µ
∂2U

∂ϕ2

¶
ϕ=ϕmin

(5)

and ϕmin is the coordinate corresponding to a minimum of the considered
potential well. In order to satisfy the conditions for the extremely under-
damped regime it should be ~γ ¿ ~Ωp.

We stress that rf-SQUID parameters are such that there are two levels
with energies Ef1 , Ef2 , close to the top of the barrier, that can be considered
as belonging to both potential wells simultaneously, as shown in Fig. 1.

In this picture the dissipation is accounted for by the effective resistance
Reff defined in the RSJ model for the junction [18]. The Reff accounts
for different processes, as a consequence it describes dissipation [3, 18], but
it is also related to the quasi-particle tunneling [19, 20], to the normal and
the subgap resistance [21]. A bigger Reff implies a better insulation and a
smaller width of the levels. Here we consider an rf-SQUID whose Josephson
junction presents a large value of resistance Reff , so that the condition

Ef1 −Ef2

~
À γ1, γ2 (6)

is satisfied, where γ1, γ2 are the widths of levels having energies Ef1 , Ef2

respectively (the exact expression for γ1, γ2 is given in the following). De-
tailed considerations on the processes that lead to the viscosity limit in
the Josephson Junction tunnelling dynamics are discussed elsewhere (see
refs.[18, 22, 23]). Viscosity can be introduced also with the help of the
Hamiltonian (see Eq. (1)) where the “particle" interacts with an infinite
number of oscillator, that is the thermal bath (see refs.[1, 13]).

To quantitatively describe the resonant tunneling induced by the exter-
nal microwave, we use the following system of equations [12] in order to
determine the density matrix elements ρjf

∂ρjf
∂t

=
iI
2e
cos(ωt)

X
m

Ã
hj|ϕ|mi exp

·
−i
µ
Em −Ej

~

¶
t

¸
ρmf

−hm|ϕ|fi exp
·
i

µ
Em −Ef

~

¶
t

¸
ρjm

!
(7)

+
X
m,n

W j m
f n ρ

m
n −

1

2

X
m

³
Wmj

mj +Wmf
mf

´
ρjf
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Here j, m, f, n are the labels for the considered levels, Ej , Em, Ef , En are
their energies and t is the time.

The matrix elements W j m
f n entering in Eq. (7) are defined exactly in

Appendix A and C. They are nonvanishing provided that

| (Em −Ej)− (En −Ef ) | ¿ ~Ωp (8)

If this condition is satisfied and the temperature is low enough, the non-
vanishing termsW j m

f n of the transition probability matrix have the following
expression:

W j m
f n =

π

2Reffe2

µ
1 + tanh

~ω̃
2kBT

¶
N(ω̃) (9)

·
h
hj|e iϕ2 |mihf |e− iϕ

2 |ni+ hj|e− iϕ
2 |mihf |e iϕ2 |ni

i
where

ω̃ =
(Em −Ej +En −Ef )

2~
(10)

and N (ω̃) is defined as

N (ω̃) =
~ω̃
π
coth

µ
~ω̃
2kBT

¶
(11)

where kB is the Boltzmann constant. We suppose that all eigenfunctions
are real. Only the four non-diagonal elements of the density matrix

ρ0f1 , ρ
0
f2 , ρ

f1
0 , ρ

f2
0

are nonzero, and they are related by the expressions

ρf10 =
¡
ρ0f1
¢∗

ρf20 =
¡
ρ0f2
¢∗

(12)

In the presence of an external microwave frequency also the two diagonal
elements ρf1f1 and ρf2f2 are non-zero.

Here we suppose that the temperature T is such that kBT ¿ ~Ωp and
it is of the order of the energy difference, so that kBT ≈ (Ef1 −Ef2). Nu-
merical calculations have been performed for T = 50mK, that is a typical
value for our experiments, but it is worth noting that the behavior is the
same for all the temperatures that guarantee the sample is in the quantum
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regime. If these hypotheses are satisfied, from Eq. (7) we obtain the rate
equations

∂ρ0f1
∂t

= − iI
2e
cos(ωt)h0|ϕ|f1ie

�
−iEf1−E0~ t

�
ρ00 +W 0 0

f1 f2ρ
0
f2 − γ1ρ

0
f1 (13)

∂ρ0f2
∂t

= − iI
2e
cos(ωt)h0|ϕ|f2ie

�
−iEf2−E0~ t

�
ρ00 +W 0 0

f2 f1ρ
0
f1 − γ2ρ

0
f2

where the widths γ1, γ2 of levels with energies Ef1 , Ef2 are given by the
following expressions

γ1 =
1

2

³
W f2 f1

f2 f1
+WLf1

Lf1
+WRf1

Rf1

´
(14)

γ2 =
1

2

³
W f1 f2

f1 f2
+WLf2

Lf2
+WRf2

Rf2

´
In order to study the resonant quantum tunneling phenomenon, only

five energy levels (Ef1 , Ef2 , E0, EL, ER) are essential quantities. E0 is the
energy of the ground state in the left potential well, EL is the first level in the
left potential well below Ef2 , ER is the first level in the right potential well
below Ef2 , and finally Ef1 and Ef2 . These energy levels vs. the external
parameter ϕx, are shown in Fig. 2 (all the energies are referred to E0).
The microwave frequency ν is supposed to be close to the frequencies Ef1/~
and Ef2/~. Here we have considered the case EL is also the ground state
of the left potential well (EL=E0), while in the right well there are many
more levels, not involved in the described process. The tunneling transition
probability between two states in different wells decreases very quickly for
states below the barrier top, such as e−2πn, where n is the number of states
counted from the barrier top [22, 23]. As a consequence it is possible to
neglect transitions into lower energy levels in the right potential well.

If these hypotesis are satisfied, the solutions of Eqs. (13) are:

ρ0f1 = Af1e
i

�
ω−Ef1

−E0
~

�
t
+Bf1e

i

�
ω−Ef2

−E0
~

�
t

(15)

ρ0f2 = Bf2e
i

�
ω−Ef1

−E0
~

�
t
+Af2e

i

�
ω−Ef2

−E0
~

�
t

where coefficients Af1 , Af2 , Bf1 , Bf2 are defined as follows
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Af1 = − I
4e
h0|ϕ|f1i

"
ω − Ef1 −E0

~
− iγ1 +

W 0 0
f1 f2

W 0 0
f2 f1

ω − Ef1−E0
~ − iγ2

#−1

Af2 = − I
4e
h0|ϕ|f2i

"
ω − Ef2 −E0

~
− iγ2 +

W 0 0
f1 f2

W 0 0
f2 f1

ω − Ef2−E0
~ − iγ1

#−1

Bf1 = − iW 0 0
f1 f2

Af2

ω − Ef2−E0
~ − iγ1

(16)

Bf2 = − iW 0 0
f2 f1

Af1

ω − Ef1−E0
~ − iγ2

The diagonal elements ρf1f1 and ρf2f2 of the density matrix can be found
by solving the following rate equations

∂ρf1f1
∂t

=
iI
2e
cos(ωt)

"
ρ0f1hf1|ϕ|0ie

i

�
Ef1

−E0
~

�
t − ρf10 h0|ϕ|f1ie

�
−iEf1−E0~ t

�#
+W f1 f2

f1 f2
ρf2f2 − 2γ1ρ

f1
f1

(17)

∂ρf2f2
∂t

=
iI
2e
cos(ωt)

"
ρ0f2hf2|ϕ|0ie

i

�
Ef2

−E0
~

�
t − ρf20 h0|ϕ|f2ie

−i
�
Ef2

−E0
~

�
t
#

+W f2 f1
f2 f1

ρf1f1 − 2γ2ρ
f2
f2

(18)

Equations 17 and 18 completely describe the dynamics of the process.
Their solutions are respectively:

ρf1f1 (t) = ρ̂f1f1 + F1e
i

�
Ef2

−Ef1
~

�
t
+ F∗1 e

−i
�
Ef2

−Ef1
~

�
t

(19)

ρf2f2 (t) = ρ̂f2f2 +D1e
i

�
Ef2

−Ef1
~

�
t
+D∗1e

−i
�
Ef2

−Ef1
~

�
t

(20)

The expressions for F1 and D1 are given in Appendix A, and these
coefficients determinate the value of the oscillating part of the tunneling
probability W . By substituting Eqs. (19) and (20) inside Eqs. (17) and
(18), we obtain the expressions of the quantities ρ̂f1f1 and ρ̂f2f2 as following:
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ρ̂f1f1 =
I2
16e2

1

γ1γ2− 1
4
W

f2 f1
f2 f1

W
f1 f2
f1 f2

·
"
γ2 | h0|ϕ|f1i |2

·
γ1−γ2W 0 0

f1 f2
W0 0
f2 f1

%�
ω−Ef1

−E0
~

�2
+γ22

&−1
�
ω−Ef1

−E0
~

�2
+γ21+

�
W0 0
f1 f2

W0 0
f2 f1

�2
+2W0 0

f1 f2
W0 0
f2 f1

#ω−Ef1
−E0
~

$2
−γ1γ2


#
ω−

Ef1
−E0
~

$2
+γ22

+1
2W

f1 f2
f1 f2

| h0|ϕ|f2i |2

·
γ2−γ1W 0 0

f1 f2
W0 0
f2 f1

%�
ω−Ef2

−E0
~

�2
+γ21

&−1
�
ω−Ef2

−E0
~

�2
+γ22+

�
W0 0
f1 f2

W0 0
f2 f1

�2
+2W0 0

f1 f2
W0 0
f2 f1

#ω−Ef2
−E0
~

$2
−γ1γ2


#
ω−

Ef2
−E0
~

$2
+γ21

#

(21)

ρ̂f2f2 =
I2
16e2

1

γ1γ2− 1
4
W

f2 f1
f2 f1

W
f1 f2
f1 f2

·
"
γ1 | h0|ϕ|f2i |2

·
γ2−γ1W 0 0

f2 f1
W0 0
f1 f2

%�
ω−Ef2

−E0
~

�2
+γ21

&−1
�
ω−Ef2

−E0
~

�2
+γ22+

�
W0 0
f1 f2

W0 0
f2 f1

�2
+2W0 0

f1 f2
W0 0
f2 f1

#ω−Ef2
−E0
~

$2
−γ1γ2


#
ω−

Ef2
−E0
~

$2
+γ21

+1
2W

f2 f1
f2 f1

| h0|ϕ|f1i |2

·
γ1−γ2W 0 0

f1 f2
W0 0
f2 f1

%�
ω−Ef1

−E0
~

�2
+γ22

&−1
�
ω−Ef1

−E0
~

�2
+γ21+

�
W0 0
f1 f2

W0 0
f2 f1

�2
+2W0 0

f1 f2
W0 0
f2 f1

#ω−Ef1
−E0
~

$2
−γ1γ2


#
ω−

Ef1
−E0
~

$2
+γ22

#

(22)

221



It is evident that these two equations are maximized when

ω =
Ef1 −E0

~
or ω =

Ef2 −E0
~

,

that is to say when resonant conditions are satisfied. Now we can introduce
the transition probability W from the left to the right potential well. Ob-
viously W is a function of the external parameter ϕx and the final goal of
this paper is to compute this quantity. The transition probability is given
by the expression

W =WRf1
Rf1

ρf1f1 +WRf2
Rf2

ρf2f2 (23)

where, in the low temperature limit, here considered, from Eq. (9) we obtain
the expressions

WRf1
Rf1

=
2 (Ef1 −ER)

Reffe2
| hR | eiϕ/2 | f1i |2 (24)

WRf2
Rf2

=
2 (Ef2 −ER)

Reffe2
| hR | eiϕ/2 | f2i |2 (25)

while the expressions for ρf1f1 and ρ
f2
f2
are given in Eqs. (19) and (20) respec-

tively.
It is worth noting that any change of the external parameter ϕx leads

to a redistribution of wave functions relative to energies Ef1 , Ef2 between
the left and the right potential well, so that transition matrix elements and
width of levels are functions of the external parameter ϕx. To complete our
considerations we will compute the levels position and the transition matrix
elements as a function of the external parameters, as shown in the next
section.

3 Levels position and transition matrix elements

As we have seen before, a necessary condition to resolve multiple peaks is
that the experimental linewidth of states (γ1, γ2) is smaller than ∆ (∆ À
~γ1, ~γ2). In Fig. 1 ϕ1, ϕ2, ϕ3, ϕ4 are the “turning points", that are the
solutions of the following equation

U(ϕ1,2,3,4) = E (26)

where E is the energy value. In Fig. 1 the points ϕmin
1 , ϕmin

2 are the
coordinates corresponding to the minima of potential U(ϕ) and the point
ϕtop is the coordinate corresponding to the maximum of the potential U(ϕ).
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For energy values E close to the top of the barrier, the wave function Ψ can
be expressed as

Ψ = G−1 · 1

(2M (E − U(ϕ)))1/4
sin

π

4
+

Z
ϕ1

p
2M (E − U (ϕ))dϕ


in the left potential well

Ψ = G−1 ·A · D− 1−iλ
2
((1 + i)(2MU1)

1/4(ϕ− ϕtop)) (27)

+G−1 ·A∗D− 1+iλ
2

³
(1− i)(2MU1)

1/4(ϕ− ϕtop)
´

close to the barrier top

Ψ = G−1 · B

(2M (E − U(ϕ)))1/4
sin

π

4
+

ϕ4Z p
2M (E − U(ϕ))dϕ


in the right potential well

In Eqs. (27) Dp is the parabolic cylinder function [24], G is a normalization
factor while quantities A and B are numerical factors (they are defined in
the following). The other quantities are defined as

Utop = U(ϕtop) (28)

U1 = −1
2

µ
∂2U

∂ϕ2

¶
ϕ=ϕtop

(29)

λ =
p
2MU1

Utop −E

U1~
(30)

Near to the top of the potential barrier we use exact solutions of the Schrödin-
ger equation for the considered system, whereas in the vicinity of the points
ϕ1, ϕ4 we use the well known method of outgoing in complex plane [25].
As result the expression for the levels positions is exact and it depends on
the parameter λ (that is adimensional). Coefficients A and B, introduced
in Eqs. (27), are defined by imposing boundary conditions for these three
expressions. By matching coefficients in the right potential well we obtain
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A =
B

23/4(2MU1)1/8
(31)

· exp

πλ
8
− iπ

8
+

iλ

4
+

iλ

4
ln

µ
2

λ

¶
+ i

ϕ4Z
ϕ3

dϕ
p
2M (E − U(ϕ))


By matching coefficients in the left potential we obtain two equations.

The first one allows to calculate the position of the levels near the barrier
top in the case of small viscosity limit

cos

Ã
ϕ4R
ϕ3

dϕ
p
2M (E − U(ϕ))−

ϕ2R
ϕ1

dϕ
p
2M (E − U(ϕ))

!

+(1 + exp(−πλ))1/2

· cos
Ã
χ+ λ

2 +
λ
2 ln

¡
2
λ

¢
+

ϕ4R
ϕ3

dϕ
p
2M (E − U(ϕ)) +

ϕ2R
ϕ1

dϕ
p
2M (E − U(ϕ))

!

= 0
(32)

In Eq. (32) phase shift χ is defined by the equation

Γ

µ
1 + iλ

2

¶
=

√
2πe(−πλ/4)p
1 + e(−πλ)

e(iχ) (33)

where Γ(x) is the Euler gamma function and the phase χ can be presented
in the form

χ =
λ

2
Ψ

µ
1

2

¶
−

∞X
k=0

µ
arctan

µ
λ

2k + 1

¶
− λ

2k + 1

¶
(34)

In Eq. (34) ψ(x) is the Euler function and

ψ

µ
1

2

¶
= −C − 2 ln 2 = −1.96351 (35)

The second equation allows to calculate the value of the coefficient B as
follows
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B = exp
¡
πλ
2

¢ "
(1 + exp (−πλ))1/2

· sin
Ã
χ+ λ

2 +
λ
2 ln

¡
2
λ

¢
+

ϕ2R
ϕ1

dϕ
p
2M (E − U(ϕ)) +

ϕ4R
ϕ3

dϕ
p
2M (E − U(ϕ))

!

− sin
Ã

ϕ2R
ϕ1

dϕ
p
2M (E − U(ϕ))−

ϕ4R
ϕ3

dϕ
p
2M (E − U(ϕ))

!#
(36)

In order to obtain two non-degenerate levels (Ef1 , Ef2) close to the barrier
top the parameter λ should be λ ≥ 1. In such a case, the normalization
factor G can be approximated as

G2 =
~
2

 ϕ2Z
ϕ1

dϕp
2M (E − U(ϕ))

+B2
ϕ4Z

ϕ3

dϕp
2M (E − U(ϕ))

 (37)

Moreover, since we consider the case the energy E is close to the barrier
top, it is possible to use expressions with an explicit energy dependence (by
using perturbation theory over the quantity (Utop − E) with separation of
the singular terms):

R ϕ2
ϕ1

dϕ
p
2M (E − U(ϕ)) =

R ϕtop
ϕ̃1

dϕ
p
2M (Utop − U(ϕ))

− (Utop −E)
q

M
2

R ϕtop
ϕ̃1

dϕ

µ
1√

(Utop−U(ϕ))
−

√
ϕtop−ϕ̃1

(ϕtop−ϕ)
√
U1(ϕ−ϕ̃1)

¶

− (Utop −E)
q

M
2U1

·
ln

µ
8(ϕtop−ϕ̃1)

√
U1√

Utop−E

¶
+ 1
2

¸ (38)

R ϕ4
ϕ3

dϕ
p
2M (E − U(ϕ)) =

R ϕ̃4
ϕtop

dϕ
p
2M (Utop − U(ϕ))

− (Utop −E)
q

M
2

R ϕ̃4
ϕtop

dϕ

µ
1√

(Utop−U(ϕ))
−

√
ϕ̃4−ϕtop

(ϕ−ϕtop)
√
U1(ϕ̃4−ϕ)

¶

− (Utop −E)
q

M
2U1

·
ln

µ
8(ϕ̃4−ϕtop)

√
U1√

Utop−E

¶
+ 1

2

¸ (39)
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In Eqs. (38), (39) quantities ϕ̃1, ϕ̃4 are defined as

ϕ̃1 = ϕ1 (E = Utop)

ϕ̃4 = ϕ4 (E = Utop)

Energies EL, ER of states ΨL, ΨR (defined in Sect. 2) can be found by
using Eqs. (32), (38), (39), provided that ΨL, ΨR are referred to the barrier
top. In this case wavefunctions ΨL, ΨR can be described by using the
quasiclassical approximation, so that we find

ΨL =
1

GL

sin

Ã
π
4 +

ϕR
ϕ1

dϕ
p
2M (E − U(ϕ))

!
(2M (E − U(ϕ)))1/4

(40)

ΨR =
1

GR

sin

Ã
π
4 +

ϕ4R
ϕ
dϕ
p
2M (E − U(ϕ))

!
(2M (E − U(ϕ)))1/4

(41)

where the factors GL and GR are

G2L =
~
2

ϕ2Z
ϕ1

dϕp
2M (E − U(ϕ))

(42)

G2R =
~
2

ϕ4Z
ϕ3

dϕp
2M (E − U(ϕ))

(43)

Finally the wave function Ψ0 of the ground state can be taken in the form

Ψ0 =

¡
2MUmin

1

¢1/8
π1/4

e

− ϕU
ϕmin
1

dϕ
t
2M(U(ϕ)−U(ϕmin

1 ))


(44)

where Umin
1,2 = U(ϕmin

1,2 ) and ϕmin
1,2 are the coordinates corresponding to the

position of the left and right minimum in the potential U(ϕ)µ
∂U

∂ϕ

¶
ϕ=ϕmin

1,2

= 0

U(ϕ) = U(ϕmin
1,2 ) + Umin

1,2 (ϕ− ϕmin
1,2 )

2 + ...
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4 The energy spectrum in the vicinity of the cross-
ing point

In order to better describe the energy spectrum near to the crossing point
we introduce the functions Φ1 and Φ2, defined as:

Φ1 =

ϕ2Z
ϕ1

dϕ
p
2M (E − U(ϕ)) +

λ

4

µ
1 + ln

µ
2

λ

¶¶

=

ϕtopZ
ϕ̃1

dϕ
q
2M (Utop − U(ϕ))− (Utop −E)

r
M

2
(45)

·
Z ϕtop

ϕ̃1

dϕ

 1p
Utop − U(ϕ)

−
p
ϕtop − ϕ̃1¡

ϕtop − ϕ
¢ ³p

U1 (ϕ− ϕ̃1)
´


+(Utop −E)

r
M

2U1
ln

Ã
21/4

8 (MU1)
1/4 ¡ϕtop − ϕ̃1

¢!

Φ2 =

Z ϕ4

ϕ3

dϕ
p
2M (E − U(ϕ)) +

λ

4

µ
1 + ln

µ
2

λ

¶¶
=

Z ϕ̃4

ϕtop

dϕ
q
2M (Utop − U(ϕ))− (Utop −E)

r
M

2
(46)

·
Z ϕ̃4

ϕtop

dϕ

 1p
Utop − U(ϕ)

−
p
ϕ̃4 − ϕtop¡

ϕ− ϕtop
¢ ³p

U1 (ϕ̃4 − ϕ)
´


+(Utop −E)

r
M

2U1
ln

Ã
21/4

8 (MU1)
1/4 ¡ϕ̃4 − ϕtop

¢!

Now we suppose that for some value of the external parameters ϕ0x, U0,
βL there is a point characterized by E0, λ0 = λ (E0) (defined in Eq. 30)
such that

Φ1
¡
U0, βL, ϕ

0
x, E0, λ0

¢
+
1

2
χ (λ0) =

π

2
+ πk1 (47)

Φ2
¡
U0, βL, ϕ

0
x, E0, λ0

¢
+
1

2
χ (λ0) =

π

2
+ πk2 (48)
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where k1, k2 are integer numbers. Equations (45), (46) allow to determine
the external parameter ϕx such that the two energy levels Ef1 and Ef2 are
closest. Next to this special point, it is possible to use Taylor expansion for
the functions Φ1 and Φ2 and we can write:

Φ1 +
1

2
χ =

π

2
+ πk1 + α1δϕx + β1δE (49)

Φ2 +
1

2
χ =

π

2
+ πk2 + α2δϕx + β2δE (50)

where
E = E0 + δE, ϕx = ϕ0x + δϕx (51)

and the quantities α1, α2, β1, β2 are given in Appendix B.
From Eqs. (32), (49), (50) we obtain the equation to calculate the energy

spectrum for two close levels near to the barrier top

β1β2(δE)
2 + α1α2(δϕx)

2 + (α1β2 + α2β1)δϕxδE −
1

4
e(−πλ) = 0 (52)

The solutions of this equation are two hyperboles, as shown in Fig. 3

Figure 3: Curves Ef1 −E0 vs. ϕx and Ef2 −E0 vs. ϕx obtained by solving
Eq. (32). All the energies are referred to the barrier top. The horizontal
line is the external field of frequency ν, it crosses the energy curves Ef1-
E0 and Ef2-E0 in two points. The vertical line represents the coordinate
corresponding to the anticrossing point. For all the parameters values are:
βL = 1.75, C = 0.1 pF , L = 210 pH.
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δE = − 1

2β1β2
(53)

·
h
(α1β2 + α2β1)δϕx ±

p
(α1β2 − α2β1)

2(δϕx)
2 + β1β2 exp(−πλ)

i
Note that Eq.(53) gives the position of two close levels as a function of

the external parameter ϕx for any λ value. If we consider the case λ is a
real parameter in the Eq. (53), hence the splitting of energy levels is small
if we consider the case λ > 1. For λ=1 from Eq. (30) we obtain

Utop −E

~Ωp
=
1

2
(54)

The two levels having energies Ef1 , Ef2 have to satisfy the condition
δE ¿ ~Ωp and this occurs if the parameter exp(−πλ) is small, that is true
if λ is of the order of one, so that exp(−πλ) is of the order of 10−2.

5 Numerical calculations

As we have said before, these resonant quantum effects can be experimen-
tally observed only in a small frequency range and for a device realized with
proper parameters. In this section we suggest a set of rf-SQUID parameters
useful in order to experimentally observe the effect studied here.

For the calculations presented here we consider a temperature T=50 mK
and the following rf-SQUID parameters: βL=1.75, L=210 pH, C=0.1 pF.
Finally we consider the effective resistance Reff=8 MΩ.

In the extremely underdamped limit, the number of peaks of the transi-
tion probability W vs. ϕx, can be three or one depending on the microwave
frequency value ν.

It is possible to observe a three peaks curve (see Fig. 4) only in a small
range of frequency and external flux. Moreover it is necessary to use small
steps in order to have a good resolution. This is possible because we are
considering the case the levels are well defined. In this case, one peak (the
central one) is connected with the anticrossing, while the other two peaks
are due to the interaction of the microwave frequency with levels f1, f2.
As a consequence, the central peak is fixed in position and height, even if
we change the frequency ν, since the anticrossing does not depend on the
external microwave frequency ν. On the contrary, the other two peaks have
a shift depending on the frequency. Of course transitions described by these
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peaks occur at values of the external flux ϕx which depend on the microwave
frequency, as shown in Fig. 3. If we represent the external microwave having
frequency ν with a horizontal line, it is possible to obtain the three peaks
curve only when the frequency crosses both the energy curves Ef1-E0 and
Ef2-E0. This condition has to be satisfied also in the moderate underdamped
regime [26], but in the considered case the levels have a better resolution
since their width is really small.

Figure 4: Transition probability W vs. ϕx for different values of the external
microwave frequency ν. W presents three peaks: the central one is due to
the anticrossing and two lateral ones are due to the microwave frequency
interacting with the two levels close to the barrier top. Curves are obtained
by using the following parameters for the numerical calculations: βL=1.75,
L=210 pH, C=0.1 pF, and Reff=8 MΩ.

For calculations presented in this paper we have considered microwave
frequencies ranging from ν = ω/2π = 25.76 GHz to ν =26.69 GHz to ob-
tain three peaks curves. For frequencies not belonging to this interval, the
transition probability is a one peak curve (Fig. 5). The only peak is due to
the anticrossing and does not depend on microwave frequency, so it is fixed
in height and position.

Moreover we have studied the dependence of the peaks on the effective
dissipation described in the RSJ model by the effective resistance Reff . As
expected [27], by increasing Reff , peaks resolution is enhanced (Fig. 6).
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Figure 5: Transition probability W vs. ϕx. Here the W presents only one
peak due to the anticrossing. The plot was obtained by using the following
parameters for the numerical calculations: βL=1.75, L=210 pH, C=0.1 pF,
and Reff=8 MΩ.

Figure 6: Transition probability W vs. ϕx for different values of the effective
resistance Reff . The plot was obtained by using the following parameters
for the numerical calculations: βL=1.75, L=210 pH, C=0.1 pF, ν= 25.756
GHz.
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It is possible to observe that the width of central peak is fixed while the
lateral peaks width changes. This is due to the change in level position for
different Reff values.

Also the βL parameter can be varied in the experiments [8] and therefore
we present some numerical calculations to study the transition probability W
vs.ϕx for three different βL values (see Fig. 7, Fig. 8 and Fig. 9). It is worth
noting that the variation of βL, corresponding to a variation of the rf-SQUID
potential barrier height, here has been obtained by changing only the value
of the inductance L (see Eq. 3), while Ic has been kept constant. We have
observed that, when we increase the βL value, the transition probability
becomes smaller so that it is necessary to increase the ϕx value to observe
the peaks. Again, it is possible to observe that the width of central peak is
fixed while the lateral peaks width changes.

Calculations we have made suggest to choose a Josephson system with
a small capacitance and a βL not too large, but definitely greater than 1.
The set of parameters used here seems to be a good compromise to achieve
the experimental observation of the phenomenon.

The experiment can be realized by using the experimental set-up de-
scribed in [7] and measuring the statistical distribution of the switching
value ϕx can be measured by repeating the process many times (about 10

4).
From the switching value distribution is straightforward to obtain the escape
rate W and to compare data and theory.

Figure 7: Transition probability W vs. ϕx for βL=2.15, L=258 pH, C=0.1
pF, Reff=8 MΩ and ν=32.818 GHz.
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Figure 8: Transition probability W vs. ϕx for βL=1.75, L=210 pH, C=0.1
pF, Reff=8 MΩ and ν= 25.756 GHz.

Figure 9: Transition probability W vs. ϕx for βL=1.35, L=162 pH, C=0.1
pF, Reff=8 MΩ and ν= 24.456 GHz.
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6 Conclusions

Results presented here describe the small viscosity limit for the resonant
quantum tunneling for an rf-SQUID, realized with proper parameters. No
fitting parameters have been used to obtain the following physical quanti-
ties: levels position, width of levels, transition probability W from the left
to the right well. These quantities are expressed as a function of the ex-
ternal parameters (like junction capacitance, external current, microwave
frequency and amplitude). It is worth noting that levels essential to study
this phenomenon are placed below the top of the barrier and that the dis-
tance between them is of the order of ~Ωp. The level splitting should be
such that to satisfy two essential conditions: it should be much smaller than
~Ωp and at the same time it should be large enough to be experimentally
observed.

The transition probability W from the left to the right potential well has
been calculated as a function of the external parameters (they are ϕx, the
microwave frequency ν, the effective resistance Reff , βL). Results obtained
here suggest that the resonant quantum tunneling is a convenient tool to
investigate macroscopic quantum phenomena.

Our study shows that in resonant conditions and in presence of a proper
microwave frequency the transition probability W vs. external parameter ϕx
can show three peaks (Fig. 4). The first is connected with the anticrossing
and the other two are due to the interaction of the microwave frequency with
the two energy levels Ef1 , Ef2 . The relative positions of these two peaks
strictly depend on the microwave frequency and on the external parameter
biasing the rf-SQUID and they disappear for frequency values external to
this small range.

Appendix A

In this appendix we give the explicit expression of quantities D1 and F1,
which appear in Eqs. (19), (20) as well as of the matrix elements W j m

f n
entering in Eq. (7).

Inserting Eqs. (19, 20) into Eqs. (17), (18) we obtain two equations
depending on the quantities D1 and F1
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h³
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Solution of equations (A.1) is
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16e2 · h0|ϕ|f1ihf2|ϕ|0i�

Ef2
−Ef1
~

�2
−4γ1γ2−2i(γ1+γ2)

Ef2
−Ef1
~ +W

f1 f2
f1 f2

W
f2 f1
f2 f1

·

" �
Ef2

−Ef1
~ −2iγ1

�
W 0 0
f2 f1�

ω−Ef1
−E0
~

�2
−γ1γ2+W 0 0

f1 f2
W 0 0
f2 f1

−i(γ1+γ2)
�
ω−Ef1

−E0
~

�

−i W
f2 f1
f2 f1

W 0 0
f1 f2�

ω−Ef2
−E0
~

�2
−γ1γ2+W 0 0

f1 f2
W 0 0
f2 f1

+i(γ1+γ2)

�
ω−Ef2

−E0
~

�
#

(A.4)

235



The explicit expression for the transition matrix elements W f1 f2
f1 f2

and W 0 0
f1 f2

is given below

W f1 f2
f1 f2

=
π

Reffe2

µ
1 + tanh

µ
Ef2 −Ef1

2kBT

¶¶
Ef2 −Ef1

π

(A.5)

· coth
µ
Ef2 −Ef1

2kBT

¶
|hf1| expi

ϕ
2 |f2i|2

W 0 0
f1 f2 =

π

2Reffe2

µ
1 + tanh

µ
Ef2 −Ef1

4kBT

¶¶
Ef2 −Ef1

2π
coth
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Ef2 −Ef1

4kBT

¶
(55)

·
h
h0| expiϕ2 |0ihf1| exp−i

ϕ
2 |f2i+ h0| exp−i

ϕ
2 |0ihf1| expi

ϕ
2 |f2i

i

W 0 0
f2 f1 = exp

µ
−Ef2 −Ef1

2kBT

¶
W 0 0

f1 f2 (A.7)

Appendix B

In this appendix explicit expression of quantities α1, α2, β1 and β2, appear-
ing in Eqs. (49) and (50) are given. For the potential, given by Eq. (1) we
have

ϕtop = ϕx + βL sin(ϕtop)

∂ϕtop
∂ϕx

= − 1

βL cos(ϕtop)− 1
∂U

∂ϕx
= −U0(ϕ− ϕx)

U1 =
U0
2

¡
βL cos(ϕtop)− 1

¢
∂U1
∂ϕx

=
1

2
βLU0

sin(ϕtop)

βL cos(ϕtop)− 1
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Utop = U0

·
1

2
(ϕtop − ϕx)

2 + βL cosϕtop

¸
∂Utop

∂ϕx
= U0

·
βL sinϕtop − (ϕtop − ϕx)

βL cos(ϕtop)− 1
− (ϕtop − ϕx)

¸
From equations (28), (31) we obtain all other derivatives that should be
found for calculation of the quantities α1,2, β1,2.

∂λ
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= −
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2M

U1
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Now by using equations (45), (46), (B.1), (B.3) we obtain the value of all
coefficients α1, α2, β1, β2.
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Appendix C

In the present appendix we give the transition matrix elements entering in
the definition of W j m

f n (see Eq. (9) and Appendix A).
Transition matrix elements between states close to the barrier top can

be calculated in quasiclassical approximation if the parameter λ (see Eq.
(27)) is λ ≥ 1. Consider first the matrix element hL|ζ|f1i. With the help of
Eqs. (27), (40), (41) we obtain

hL|ζ|f1i =
1

GLGEf1

ϕ2(Ef1)Z
ϕ1(Ef1 )

dϕ

sin

Ã
π/4 +

ϕR
ϕ1(EL)

dϕ
p
(2M (EL − U(ϕ)))

!
(2M (EL − U(ϕ)))1/4 (2M (Ef1 − U(ϕ)))1/4

ζ
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sin

π/4 +

ϕZ
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dϕ
q
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
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that is equal to

hL|ζ|f1i =
1

2GLGEf1

Z
dϕp

(2M (Ef1L − U(ϕ)))
(C.2)

ζ cos

Ã
(Ef1 −EL)

Z ϕ

ϕ1(Ef1L)

Mdϕp
2M (Ef1L − U(ϕ))

!
To calculate the last integral we can use the time variable t according to
the classical equation of motion

M

2

µ
∂ϕ

∂t

¶2
= E − U(ϕ) (C.3)

As a consequence, Eq. (C.2) becomes

hL|ζ|f1i = 1

2MGLGEf1

T1/2Z
0

dtζ cos

µ
2π

T1
tc

¶
(C.4)

where T1 is the period of the classical motion in the left potential well with
energy E and c is the number of states between energy levels Ef1 and EL

plus one. In our case c = 1. The initial value for ϕ is ϕ(0) = ϕ1.

T1 = 2M

ϕ2Z
ϕ1

dϕp
(2M (E − U(ϕ)))

(C.5)

In the same way we obtain transition the matrix element hR|ζ|f1i.
In Eq. (C.1) ϕ1(Ef1) is the first crossing point of the energy level Ef1

in the left well and ϕ2(Ef1) is the second crossing point of the energy level
Ef1 in the left well.

In the same way in Eq. (C.2) ϕ1(Ef1L) is the first crossing point of the
energy level Ef1L in the left well, where Ef1L is defined as

Ef1L =
Ef1 +EL

2
(C.6)

Consider now the transition matrix element hf2| ζ|f1i. From Eq. (27) we
find

hf2| ζ|f1i = ~
2Gf1

Gf2

·
"
ϕ2R
ϕ1

dϕ ζ√
(2M(E−U(ϕ))) +Bf1Bf2

ϕ4R
ϕ3

dϕ ζ√
(2M(E−U(ϕ)))

# (C.7)
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where ϕ1,2,3,4 are the turning points and E here is E = (Ef1+Ef2)
2 . By using

Eq. (C.3) we reduce the expression (C.7) to the form

hf2| ζ|f1i = ~
2MGf1Gf2

 T1/2Z
0

dtζ +Bf1Bf2

T2/2Z
0

dtζ

 (C.8)

In Eq. (C.8) the first integral is taken over the left potential well and the
second one over the right potential well and T1, T2 are the periods of the
classical motion in the left and in the right well respectively.

To improve Eq. (C.9) we should take into account ortogonality of wave-
functions relative to the energies Ef1 , Ef2 . As result we obtain

hf2| ζ|f1i = ~1−Bf1Bf2

2MGf1Gf2

 T2
T1 + T2

T1/2Z
0

dtζ − T1
T1 + T2

T2/2Z
0

dtζ

 (C.9)
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