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Abstract
We consider the waveguiding by thin patterned slabs embedded in

a homogeneous medium. In the longwave limit, the wave spectra of
slabs are found to be well described by a single frequency-independent
parameter, which we call the “guiding power". The guiding power
can be evaluated in an effective medium approximation, similar to the
Maxwell Garnett theory, but modified for the local field corrections
specific to the two-dimensional geometry. The guiding power is dif-
ferent for the transverse magnetic (TM) and transverse electric (TE)
polarizations. We show that the confinement factor of TM waves in a
porous layer with high index ratio can exceed that for a homogeneous
layer. Similarly enhanced confinement of TM waves is demonstrated
for a layer of elongated cylinders or elliptic inclusion with a high axis
length ratio. The effect originates from the suppression of local field
effects and the increasing internal field in the inclusion. It may be
useful in the design of far-infrared or THz quantum cascade lasers.

PACS: 42.70.Qs, 42.79.Gn, 41.20.Jb, 42.25.Lc, 78.66.Qn
Keywords: waveguiding, modal control, photonic crystals

1 Introduction. Guiding power

Waveguiding of light in layered patterned structures, such as slabs of two-
dimensionally periodic photonic crystals (2D PC), has attracted much in-
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terest in view of potential photonic applications [1, 2, 3]. The studied 2D
patterns include periodic lattices of deep etched air pores or “conjugate"
lattices of high permittivity cylinders. The patterned slabs (not necessarily
periodic) can be employed in waveguides as either a core or a cladding. Nu-
merous theoretical computations of the band spectra of 2D PC and PC slabs
have been reported, based on expansions of the electromagnetic field in plane
waves [4, 3] or cylindrical waves [5, 6], as well as based on finite-difference
time-domain methods [7, 8].

The low-frequency region of electromagnetic waves in the 2D PC is well
understood. The waves have a linear spectrum that is very close to that
obtained in the effective media approximation [9, 10] with an effective per-
mittivity corresponding to the Maxwell Garnett theory [9, 11]. This means
that when the wavelength λ exceeds the structure period a, the optical
properties are primarily determined by the filling factor f of the inclusions
(i.e. their total volume fraction) and do not rely on their long-range order or
their shape variation. The disorder leads to a weak (for λÀ a) Rayleigh-like
scattering.

In this paper we investigate the waveguiding by PC slabs in a long wave-
length frequency range, qd¿ 1, where q is the wave vector, d is the thickness
of the active or a core layer of the waveguide. We show that in this range the
waveguiding has a universal form described by a single parameter, which we
call the “guiding power". For short-period structures, dÀ a, and for sparse
structures, d ¿ a, it can be calculated in terms of the polarizability of the
patterned dielectric core via a self-consistent procedure to include local field
effects.

We discuss the waveguiding in highly inhomogeneous structures, such as
planar regular arrangements of nearly overlapping cylindrical pores or high-
index cylindrical rods with large spacings. For thin slabs, the local field
effects are different from those in an infinitely extended 2D PC, primar-
ily because of the short-range dipolar interaction between the finite-height
cylinders or spheres. Proper inclusion of the local field effects in the low-
frequency region enables a perturbative approach with fast convergence.

In the design of far-infrared and terahertz semiconductor lasers the opti-
cal confinement is an important issue. It poses a severe problem for quantum
cascade lasers where intersubband radiative transitions require transverse
magnetic (TM) polarization of emitted waves [12]. With this polarization
in the long wavelength region, the so-called modal confinement factor ΓTM
is known to be small for any contrast of the dielectric constants between the
core and the claddings [13, 14]. The reason for the small values of ΓTM is the
reduced electric field in the high-index core due to the boundary conditions
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at the core layer surface. The decrease of the electric field devalues tradi-
tional attempts to improve waveguiding by choosing cladding layers with
lower index.

In this paper, we propose to enhance the confinement by using pene-
tration of the electric field into a patterned core. The model core under
consideration comprises additional cylinder inclusions of high dielectric con-
stant compared to that of the claddings. The filling factor for these inclu-
sions is small, so as not to disturb processes in the active region (which is
the remainder of the core outside the inclusions). We show that the better
penetration of the field can result in a much stronger waveguiding (much
reduced field spread outside the layer), as compared to the homogeneous
layer. This case has an advantage of not being critically sensitive to the
composition of the claddings.

An alternative way to improve the guiding of TM waves is to use a porous
PC slab as the active layer. We show that the confinement of TM modes
in a structure with a high index contrast (typical for silicon-on-insulator
devices) can be enlarged if the active layer has a patterned structure with
pores. Even though the average index of the porous core is reduced, this is
more than compensated by better penetration of the electric field into the
structure, so that the wave confinement is ultimately enhanced.

Patterned structures with the enhanced confinement can be advanta-
geously used in the laser design to minimize the losses from free-carrier
absorption and reduce the threshold current.

An unusually strong guiding of TM waves in a layer of cylinders was pre-
viously observed in numerical studies of waveguiding by PC slab structures
[15, 16] but the effect had not been properly recognized or explained.

2 Weakly guided waves in laterally uniform wave-
guides

In order to introduce the concept of weak waveguiding, let us first consider
the propagation of an electromagnetic wave along a laterally uniform di-
electric waveguide with a core layer. Let the index profile depend only on
z, approaching at large |z| the (background) dielectric constant �b of the
cladding layers.

Two wave polarizations are distinguished by the field orientation relative
to the structure symmetry plane. Consider the case of a TE mode, when the
electric field has only an in-plane y component and is strictly perpendicular
to the wave propagation direction x. The wave equation for the electric field
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Ey = Ey(z) exp(iqx) is of the form

d2

dz2
Ey(z) = [q

2 − k20�(z)]Ey , (1)

where q is the 2D wave vector in the plane of the waveguide. Let us integrate
Eq. (1) between −z1 and z1, that is over the region where the permittivity
is variable. At |z| ≥ z1 the solution of the Eq. (1) has the form Ey(z) =
E(0) exp(±κz) and we get

−2κEy(0) =

Z z1

−z1
[q2 − k20�(z)]Ey(z)dz . (2)

In the limit of weak waveguiding, κz1 ¿ 1, the field Ey(z) is a slowly varying
function across the entire layer. Therefore it can be replaced in the integral
by a constant value taken, e.g., at z = 0. Outside the guiding layer we have
q2 = �bk

2
0+κ

2 and hence in Eq. (2) we can take q2 = �bk
2
0 as the zeroth-order

approximation. This yields

κ =
1

2
�bk

2
0

Z ∞

−∞

µ
�(z)

�b
− 1
¶
dz . (3)

We have replaced the limits of integration by ±∞, since the region where
�(z) = �b does not contribute to the integral in Eq. (3).

Similar arguments can be used to consider the waveguiding of TM waves,
when the only non-vanishing component of the magnetic field is Hy. For this
case, in the long wavelength limit, the quantity that remains a smoothly
varying function across the layer is the normal component of the electric
displacement vector Dz. Integrating the wave equation for Dz we obtain

κ =
1

2
�bk

2
0

Z ∞

−∞

µ
1− �b

�(z)

¶
dz. (4)

For both polarizations the dispersion relation for the guided wave is of the
form

�bk
2
0 = q2 − κ2, (5)

where k0 = ω/c is the frequency parameter. Parameter κ describing the
exponential decay of the wave away from the core, exp(−κz), depends on
frequency. Since κ ∝ k20 the spectrum of the guided wave in the long-
wavelength limit has a universal character. It is convenient to introduce
another parameter g,

κ =
1

2
�bk

2
0g, (6)
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which we shall call the “guiding power" of the high-index core. The value
of g defined by Eq. (6) is owing to the fact that it is frequency-independent
in the weak guiding limit, κd¿ 1 [13]. So long as g is constant, Eqs. (5, 6)
define a universal dispersion relation for the guided modes of a three-layer
dielectric waveguide of core thickness d.

According to Eqs. (3) and (4), the guiding power is given by :

gTE =

Z ∞

−∞

µ
�(z)

�b
− 1
¶
dz , gTM =

Z ∞

−∞

µ
1− �b

�(z)

¶
dz . (7)

For the simplest case of a constant permittivity (�g) core layer, Eqs. (7)
reduce to

gTE =
�g − �b
�b

d , gTM =
�g − �b
�g

d . (8)

In structures with a low index contrast, (�g − �b) ¿ �b, the values of g
for both modes are small and close to each other. In the opposite limit,
(�g/�b)À 1, the guiding power for the TM mode is �b/�g times weaker than
gTE, which can be explained by the reduced z component of the electric field
inside the slab.

Confinement of guided waves is usually described by the dimensionless
“confinement factor" Γ (fraction of the wave intensity that flows in the high-
index core). Quite generally, Γ is proportional to the guiding power. The
condition Γ ¿ 1 corresponds to the weak guiding limit. In this limit the
guiding power determines both the confinement properties and the disper-
sion of waves.

3 Waveguiding by a PC slab

Consider now the electromagnetic wave propagation along a photonic crys-
tal slab formed either by a lattice of holes in a core layer or by a “mirror"
structure with a set of cylinder rods serving as the core. In the long wave-
length limit λÀ a, d, where a is the PC lattice constant and d is the layer
thickness, the field inhomogeneity is important only at short distances away
from the slab, since the short-range components of the fields decay exponen-
tially over the distances of order a. This allows us to identify the polarized
waves as TE-like and TM-like. For λ > d the weakly bound guided waves
have a smooth exponential decay of the wave field away from the core,
Ez = Ez, out exp(−κz) with κd¿ 1. The relationship between κ and q can
be obtained either by integrating the wave equation using the weak-guiding
approximation (as in the preceding section) with averaging in the lateral
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plane, or by using the effective media approach. The latter corresponds to
replacing the PC layer by a homogeneous slab with an effective (anisotropic)
dielectric constant [17]. Equations (5, 6) remain valid in both cases, but the
guiding power g must now be evaluated taking account of the polarizability
of the laterally inhomogeneous guiding layer.

Consider a core comprising a set of dielectric cylinders of radius r with
the dielectric constant �cyl and height d À r. The cylinders are spaced
apart with a lattice constant a and the core medium between the cylinders
is assumed to have the same permittivity �b as the background. To compare
the results with those of full-scale calculations, we further consider a square
lattice of cylinders and the structure parameters close to those studied in
[15, 16].

Importantly, the polarizability of a single cylinder is highly anisotropic.
For a sufficiently elongated cylinder, d/r ≥ 5, the polarization vector inside
the cylinder is homogeneous and equal to that of an ellipsoid with a high
axes length ratio. Besides, one must allow for depolarization effects. We
take them into account approximately, by replacing the cylinders by prolate
ellipsoids with the same diameter and the same volume, so that the axes
length ratio of the ellipsoid Re = 3/4(d/r). The dipole moment of a single
cylinder in an external electric field equals Pz = V αzEz, where V = πr2d
is the cylinder volume and the polarizability of a single cylinder αz is given
by

αz =
1

4π
�b

�cyl − �b
�b + (�cyl − �b)nz

. (9)

Here nz is the depolarization factor [20]. Even though in our case nz ¿ 1,
the product �cyl nz cannot be neglected. The average dielectric function of
the layer equals

�l, k = �b + f�b
�cyl − �b

�b + (�cyl − �b)nz
. (10)

The guiding power can now be calculated as in Eq. (8),

gTM = d(1− �b/�l, k) , (11)

and is given by

gTM, cyl = d
f(�cyl − �b)

�b + (f + nz)(�cyl − �b)
. (12)

The spectrum of the TE mode can be calculated in a similar way, with the
transverse layer polarizability, �l, ⊥, expressed in terms of the transverse
polarizability of a single cylinder, αy. The result is similar to Eq. (9) except
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for the depolarization factor, which should now be replaced by ny. For a
highly elongated cylinder, ny is very close to 0.5, so that

αy =
1

2π
�b
�cyl − �b
�cyl + �b

. (13)

In calculating the average dielectric function �l, ⊥ of the layer one should
take into account the local field effects (enhancement of the local field due
to the field of surrounding cylinders). The simplest way to do this is to use
the Maxwell Garnett approach, which is strictly applicable for d ¿ a. In
this approximation we have

�l, ⊥ = �b
�b + �cyl + f(�cyl − �b)

�b + �cyl − f(�cyl − �b)
. (14)

The guiding power for TE waves is then given by

gTE, cyl = 2d
f(�cyl − �b)

�b + �cyl − f(�cyl − �b)
. (15)

Figure 1: Low-frequency spectra of a photonic crystal slab composed of
a square lattice of cylindrical rods (left panel) calculated in the “guiding
power" approximation, Eqs. (5, 6). The TE mode is shown by a blue solid
line, the TM mode by red line. Results of full-scale numerical calculations
[15] are shown by open (TE) and closed (TM) dots. The dashed line indicates
the light cone boundary. The filling factor is f = 0.125 and the cylinder’s
permittivity is �cyl = 12.
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The calculated spectra of TM and TE modes in the “guiding power"
approximation are shown in Fig. 1 for a square lattice structure with �cyl =
12, �g = �b = 1, d/a = 2, and r/a = 0.2 (nz = 0.03). The results are
compared with those of full-scale numerical calculations [15]. Our spectra
shown in Fig. 1 do not include the effect of Bragg reflection, which can be
allowed for by using a perturbative approach [19]. With Bragg reflections
included [18], the guiding-power spectra approach the exact curves very
closely.

Note that the guiding-power spectra are described by one parameter g
for each mode. We can determine the values of these parameters by a best
fit to the exact curves. In π/a units, the best-fit parameters are gTE = 1.2
and gTM = 3.2. These values can then be compared with those directly
calculated from Eqs. (12,15), giving gTE, cyl = 1.5 and gTM, cyl = 3.2. For
TE waves, the Maxwell Garnett approximation apparently overestimates the
local field effects. If we use the polarizability of separate cylinders, we find
gTE = 1.3, which is closer to the best fit.

For the TM mode, which is of practical importance for intersubband
lasers and is our main interest in this paper, the calculated value gTM, cyl

provides an excellent approximation. We regard this very good agreement as
a justification for applying the guiding power approach to calculations of the
confinement factor. Note that due to the layer anisotropy, the waveguiding
for TM waves is much stronger than that for TE waves.

Consider now the waveguiding in structures with a porous core layer. To
calculate the guiding power for TM waves in this case, we use again Eq. (11).
However, the depolarization effects are now very different. As is well known
[20], these effects are important when the high-permittivity component has
a convex shape, as is the case for cylinders. In contrast, for the cylindrical
holes, the effect of depolarization can be essentially neglected, due to the
concave shape of the high-permittivity component. Hence �l, k is given by

�l, k = �g + (�b − �g)f , (16)

where the fraction of high-polarizability material in the core equals 1−f for
a film of porosity f . The resultant TM-wave guiding power is of the form

gTM, por = d
(1− f)(�g − �b)

�b + (1− f)(�g − �b)
. (17)
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Figure 2: Low-frequency spectra of a photonic crystal slab formed by a
dielectric layer with a triangular lattice of air holes with lattice constant
a (left panel). Layer thickness is d = 0.6a, material permittivity is �g =
12 and the hole radius is r = 0.45a. Results of the full-scale numerical
calculation [15] are shown by open (for TM wave) and closed (TE) dots; red
and blue lines show the spectra of TM and TE waves in the “guiding power"
approximation; dashed line shows the edges of the light cone.

To calculate the guiding power for TE waves, we again use the Maxwell
Garnett approximation, noting, however, that it is strictly applicable only
for thick enough guiding layers, dÀ r (this restriction is, of course, compati-
ble with λÀ d required for the validity of the guiding power approximation).
For a porous layer we find

�l, ⊥ = �g
�b + �g + f(�b − �g)

�b + �g − f(�b − �g)
, (18)

whence the guiding power for TE waves is of the form

gTE, por = d
(1− f)(�2g − �2b)

�b[�b + �g − f(�b − �g)]
. (19)

To check these results against those of full-scale numerical calculations
[15], we used Eqs. (5, 6) to calculate the TE and TM wave spectra for
a triangular lattice of pores with d = 0.6a, and r = 0.45a (the porosity
f =0.734), see Fig. 2. The values of g in π/a units that give best fit to
the spectra are gTE = 3.1 and gTM = 1.4. The values calculated from Eqs.
(17,19) are gTE, por = 3.4 and gTM, por = 1.4. As expected, the spectrum
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of the TM guided wave is well described with an average dielectric constant
of the core layer over most of the Brillouin zone up to the zone boundary,
where it is strongly modified by the Bragg reflection. The Bragg reflection
can be allowed using a perturbative approach [19, 18]. For a high-porosity
layer of fairly small thickness, the spectrum of TE waves is also described
by the guiding power approach, but the value of gTE, por is overestimated in
the Maxwell Garnett approximation.

Note that both TM and TE waves remain weakly guided even in the
extreme limit of sparse structures, aÀ d, so long as λÀ a [18].

4 Confinement factor of TM waves by a PC slab

The modal gain in a three-layer slab waveguide with an active core layer
(ACL) of thickness d can be expressed as a product of the material gain,
GACL = k0n

00/
√
�ACL and the dimensionless “optical confinement factor",

Γ. For weakly guided TE waves with a smooth variation of the electric field
of the wave across the layer, the confinement factor is just proportional to
the guiding power, ΓTE = κd = �bk

2
0dgTE/2. For TM waves the confinement

is influenced by the weakening of the electric field in the high-permittivity
core. Generally, it can be written in the form [14]

ΓTM =

R
ACL E

2
zdzR∞

−∞E2zdz
, (20)

where the integral in the numerator is taken over the active region. For a
homogeneous core layer one can calculate the confinement factor explicitly.
In the case of weak guiding, κd ¿ 1, using Eq. (20) and the boundary
condition for the normal component of the field at the core edge planes, we
find

ΓTM =
(k0d)

2

2

µ
�b
�g

¶3µ
1− �b

�g

¶
�g . (21)

The value of ΓTM is smaller than ΓTE by a factor (�b/�g)3. For a given core
composition (i.e. for a fixed value of �g) and as a function of the cladding-
layers index, ΓTM has a maximum value,

ΓTM, max ≈ 0.05 �g(k0d)2 , (22)

achieved when the ratio of the dielectric constants is �b/�g = 3/4. Note that
ΓTM, max is about ten times smaller than the confinement of the TE mode
achievable in the same structure. For a fixed value of �g, the factor ΓTE
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does not have a maximum, except at �b = 1, where ΓTE ≈ 0.5 �g(k0d)
2 ≈

10 ΓTM, max. The difference in confinement factors is negligible in the struc-
tures with very small index contrast and thus very small confinement factors
for both waves [17].

In the preceding section we showed that the TM waveguiding can be
enhanced and even can exceed that for the TE mode by incorporating in
the core layer cylindrical rods of high polarizability. We shall now show that
the mode confinement in the active part of the core layer can be enhanced
as well.

Consider the waveguiding in a patterned structure with initially small
difference between the dielectric constant of the active layer (denoted by �g)
and that of the cladding background, �b. Small values of (�g−�b) are typical
for quantum cascade lasers with a multilayer active region [12]. To enhance
the waveguiding, we incorporate in the structure a set of cylindrical rods of
radius r, lattice constant a, and dielectric constant �cyl. (Although we speak
of the “lattice constant", the periodicity of rods is of no importance here
and the result can be expressed in terms of their fill factor f .)

Figure 3: Normalized confinement factor for a PC slab with a square lat-
tice of high-polarizability cylinders embedded in the core layer plotted as
a function of f for several values of the ratio R = �cyl/�g, for �g = 12 and
�b = 11.
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For a waveguide with a patterned core layer, we first use the average
dielectric constant to estimate the average field (which is somewhat different
from the local field), and then use Eq. (20) to calculate the confinement
factor of guided TM waves

ΓTM =
(k0d)

2

2

µ
�b
�l, k

¶2µ
1− �b

�l, k

¶
(1− f)�g . (23)

It can be seen from Eq. (23) that in structures with a high ratio R =
�cyl/�b, the enhancement of waveguiding with f due to the increasing factor
(1− �b/�l, k) can overwhelm at small f both the decrease in (1− f) and the
decreasing factor (�b/�l, k)2 that describes reduction of the electric field in
the active layer.

The variation of the confinement factor, calculated with Eq. (10) [mod-
ified to include a term proportional to (�g − �b)] and Eq. (23), is plotted
in Fig. 3. The increase of confinement with f is mainly due to the guiding
power enhanced by the better polarizability of cylinders, hence it is most
effective at small f . It can be seen from Eqs. (23) and (10) that the in-
crease of confinement with f takes place only provided �g > 3(�g − �b) + 1
and �cyl > 2�g. Note, that the increase of �l, k with f towards the optimum
value �l, k, opt should be evaluated at fixed �b and �g (we have used �b = 11

and �g = 12). This gives �l, k, opt =
p
(3)�b. For �cyl À �g the optimum

filling factor is small, f ¿ 1, and the factor 1− f is close to unity. In this
most favorable case, the resulting confinement factor is larger than that for
the initial homogeneous structure and approaches the optimal value given
by Eq. (22).

The dependence of the confinement factor on the cylinder dielectric con-
stant for f = 0.05 is shown in Fig. 4. In terms of the cylinder polarizability
αz (Eq. 9), the enhancement of confinement is well pronounced for fαz > 20,
which can be achieved in the low-wavelength limit by inclusions of extremely
highly-polarizable materials.

Next we consider the waveguiding in structures with a porous core layer.
As seen from Eqs. (17), the guiding power of a porous active layer is smaller
than that of a homogeneous layer for any ratio R = �g/�b and is decreasing
with f . However, for large R the decrease is small, while the rise of the
electric field with the layer porosity provides an enhancement of the TM
wave confinement.
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Figure 4: Normalized confinement factor as a function of �cyl for a PC slab
with a square lattice of high-polarizability cylinders embedded in a core layer
(�g = 12) for several values of the filling factor. The background permittivity
outside the core layer is �b = 11.

Variations of the guiding power and the confinement factor with the
porosity f for several values of the ratio R are shown in Fig. 5. For a given
R, the maximum value of ΓTM is achieved at

fmax =
R− 3
R− 1 . (24)

Hence, replacing the homogeneous layer by a porous layer can increase the
modal gain only using materials with R > 3. The maximum value of ΓTM
is

ΓTM, max =
4R3

27(R− 1)2Γhom , (25)

where Γhom is the confinement factor for a homogeneous core layer of the
same R. As seen from Eq. (25), the increase of confinement by porosity can
be tangible only for structures with large R. For Si/SiO2 structures with
R = 6 the maximal confinement enhancement is achieved at f = 0.6, but it
is not very large (1.28); for R = 12 the enhancement is 2.1.
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Figure 5: Porosity dependence of the guiding power gTM (in units of d, left
panel) and the normalized confinement factor ΓTM (right panel) for a PC
slab with a porous core layer. Both parameters are plotted as functions of
the porosity f for several values of R = �g/�b.

We remark that although the numerical values above can be determined
more accurately with more elaborate numerical calculations, the increase of
confinement by patterning initially homogeneous layers is an exact result for
waveguide structures with a high enough index contrast between the core
and the claddings. The result is based solely on the power-law f depen-
dencies of the guiding parameter gTM and the field ratio inside the active
layer.

5 Conclusions

In conclusion, we considered the polarization-dependent waveguiding of light
by thin highly inhomogeneous slabs embedded in a uniform medium. We
examined exemplary slab structures comprising a monolayer of patterned
cylindrical pores etched in a active core layer or a pattern of high-index di-
electric rods (cylinders), embedded in the core layer. We demonstrated that
for an optimal choice of the patterned layer structure an increase of optical
confinement of TM wave is possible compared to a homogeneous layer. This
increase can be achieved both by incorporating sparsely separated high-index
rods which promote electric field penetration in the patterned structure and
by using high-porosity core layers. Our results can be useful in the design
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of quantum cascade lasers.
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