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Abstract

We study analytic structure of the Green’s function (GF) for the ex-
actly solvable Fano-Anderson model. We analyze the GF poles, branch
points and Riemann surface, and show how the Fermi’s Golden Rule,
valid in perturbative regime for not to large time, appears in this con-
text. The knowledge of analytic structure of the GF in frequency rep-
resentation opens opportunities for obtaining formulas for the GF in
time representation alternative to the standard one using the spectral
density.

PACS: 03.65.Xp

The Fano-Anderson model [1], which presents discrete level coupled to
continuum is probably one of the simplest and best known in quantum me-
chanics. It is exactly solvable, and the solution of the model in terms of
Green’s functions (GF) is presented in [2]. The spectral line intensity calcu-
lated in the paper by Fano are conveniently represented using the Green’s
function spectral density [2]. When the problem is treated within the quan-
tum mechanics proper, one is typically interested in the tunneling of the par-
ticle, initially localized at the discrete level into continuum (see e.g. Cohen-
Tannoudji et. al. [3]). The non-tunneling amplitude is standardly expresses
also through the Green’s function spectral density, so pragmatically speak-
ing this is what we need. However, in this paper we would like to see the
Green’s function in a broader context, and study its analytical structure
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as a function of frequency. We’ll see that Green’s function (in frequency
representation) is a multi valued function, and on simple examples study its
branch points, poles and Riemann surface. In fact, we’ll see that this study
can be of practical value also, because it opens new opportunities to connect
the frequency representation of the Green’s function (used in calculation of
the spectral line intensity) with the time representation, necessary for the
quantum mechanics proper.

To have everything at hand let us present a pedagogical derivation of
the non-tunneling amplitude. Our system consists of the continuum band,
the states bearing index k, and the discrete state d, having energy �. The
Hamiltonian of the problem is

H =
X
k

ωk |ki hk|+ � |di hd|+
X
k

¡
Vk |ki hd|+ h.c.

¢
, (1)

where |ki is a band state and |di is the state localized at site d; h.c. stands
for the Hermitian conjugate. The wave-function can be presented as

ψ(t) = g(t) |di+
X
k

b(k, t) |ki , (2)

with the initial conditions g(0) = 1, b(k, 0) = 0. Notice that the non-
tunneling amplitude is just the appropriate GF in time representation. Schrö-
dinger Equation for the model considered takes the form

i
dg(t)

dt
= �g(t) +

X
k

V ∗k b(k, t)

i
db(k, t)

dt
= ωkb(k, t) + Vkg(t) (3)

Making Fourier transformation (Im ω > 0)

g(ω) =

Z ∞

0
g(t)eiωtdt, (4)

we obtain

−i+ ωg(ω) = �g(ω) +
X
k

V ∗k b(k, ω)

ωb(k, ω) = ωkb(k, ω) + Vkg(ω). (5)

For the amplitude to find electron at the discrete level, straightforward al-
gebra gives

g(t) =
1

2πi

Z
g(ω)e−iωtdω, (6)
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where
g(ω) =

1

ω − �− Σ(ω) , (7)

and

Σ(ω) =
X
k

|Vk|2
ω − ωk

(8)

The integration in Eq. (6) is along any infinite straight line parallel to real
axis in the upper half plane of the complex ω plane. Notice that g(ω) is the
GF in frequency representation. The quantity Σ(ω) is self-energy (or mass
operator).

For tunneling into continuum, the sum in Eq. (8) should be considered
as an integral, and Eq. (8) takes the form

Σ(ω) =

Z Et

Eb

∆(E)

ω −E
dE, (9)

where
∆(E) =

X
k

|Vk|2δ(E − ωk), (10)

where and the limit of integration are the band bottom Eb and the top of
the band Et. We would like to calculate integral (6) closing the integra-
tion contour by a semi-circle of an infinite radius in the lower half-plane.
Thus we need to continue analytically the function g(ω) which was defined
initially in the upper half plane (excluding real axis) to the whole complex
plane. We can do it quite simply, by considering Eqs. (7) and (9) as defining
propagator in the whole complex plane, save an interval of real axis between
the points Eb and Et, where Eq. (9) is undetermined. (Propagator analyti-
cally continued in such a way we’ll call the standard propagator.) Thus the
integral is determined by the integral of the sides of the branch cut between
the points Eb and Et.

The real part of the self-energy Σ0 is continuous across the cut, and the
imaginary part Σ00 changes sign

−Σ00(E + is) = Σ00(E − is) = π∆(E) s→ +0. (11)

So the integral along the branch cut is

Icut =

Z Et

Eb

∆(E)e−iEtdE
[E − �− Σ0(E)]2 + π2∆2(E)

. (12)

Thus we have
g(t) = Icut(t), (13)
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Figure 1: Contour used to evaluate integral (6). Radius of the arc goes to
infinity.

and the survival probability p(t) is

p(t) = |g(t)|2. (14)

In the perturbative regime |Σ0(�)|, |Σ00(�)| ¿ � − Eb, Et − � the main
contribution to the integral (12) comes from the region E ∼ �. Hence the
integral can be presented as

Icut =

Z ∞

−∞
∆(�)e−iEtdE

(E − �− Σ0(�))2 + π2∆2(�)
(15)

and easily calculated to give the well known Fermi’s golden rule (FGR)

p(t) = e−t/τ , (16)

where
1/τ = 2π∆(�). (17)

However, even in the perturbative regime, the FGR has a limited time-
domain of applicability [3]. For large t the survival probability is determined
by the contribution to the integral (12) coming from the end points. This
contribution can be evaluated even without assuming that the coupling is
perturbative. Let ∆(E) ∼ (E − Eb)

β β > 0) near the band bottom (the
contribution from the other end point is similar). Then for large t

I
(b)
cut ∼ t−(β+1). (18)

The similar contribution comes from the top of the band.
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If there can exist poles of the propagator (7), we should add the residues
to the integral (12). Thus we obtain

g(t) = Icut(t) +
X
j

Rj , (19)

where the index j enumerates all the real poles Ej of the integrand, and

Rj =
e−iEjt

1− dΣ0
dE

¯̄
E=Ej

. (20)

Notice, that the poles correspond to the energies of bound states which can
possibly occur for E < Eb or E > Et, and which are given by the Equation

Ej = �+
X
k

|Vk|2
Ej − ωk

. (21)

If we take into account that normalized bound states are

|Eji =
|di+Pk

Vk
Ej−ωk |kih

1 +
P

k
|Vk|2

(Ej−ωk)2
i1/2 , (22)

then the residue can be easily interpreted as the amplitude of the bound
state in the initial state |di, times the evolution operator of the bound state
times the amplitude of the state |di in the bound state

Rj = hd |Eji hEj |di e−iEjt. (23)

If the propagator has one real pole at E1, from Eq. (19) we see that the
survival probability p(t) → |R1|2 when t → ∞. If there are several poles,
this equation gives Rabi oscillations.

Notice that Eq. (19) is just the well known result [2]

g(t) =

Z ∞

−∞
A(ω)e−iωtdω, (24)

where
A(ω) = − 1

π
Im [g(E + is)] (25)

is the spectral density function. The first term in Eq. (19) is the contribution
from the continuous spectrum, and the second term is the contribution from
the discrete states.
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An indication that there is more in the GF than we have so far discussed
comes from the following fact: we could have obtained the FGR in pertur-
bative regime directly from Eq. (6), changing exact Green function (7) to
an approximate one, which may be called the FGR propagator

gFGR(ω) =
1

ω − �− Σ0(�) + iπ∆(�)
. (26)

Thus approximated, propagator has a simple pole ω = � + Σ(�), and the
residue gives Eq. (16). Thus, the propagator which is used to obtain Eq.
(15) and the FGR propagator have totally different singularities, and still
give the same survival probability (in finite time interval).

The explanation is that the GF is multi valued, and different sheets of
the function can be used to calculate integral (6). These ideas can be easily
understood for simple examples. Consider a site coupled to a semi-infinite
lattice [4]. The system is described by the tight-binding Hamiltonian

H = −1
2

∞X
n=1

¡ |ni hn+ 1|+ |n+ 1i hn| ¢
+� |di hd|− V

¡ |di h1|+ |1i hd| ¢, (27)

where |ni is the state localized at the n-th site of the lattice. The band
(lattice) states are described by the Hamiltonian

H0 = −
X
k

cos k |ki hk| , (28)

where |ki = √2NPn sin(kn) |ni. Hence we regain Hamiltonian (1) with
Vk = −

√
2V sin k. After simple algebra we obtain (in the upper half plain)

Σ(ω) = ∆0

³
ω −

p
ω2 − 1

´
, (29)

where the square root is defined as having the phase π/2 just above the real
axis between −1 and 1, and ∆0 = 2V 2. We immediately see that the GF
for this model is a double valued function, the branch points being +1 and
−1. The poles are given by the equation

ω1,2 =
�(1−∆0)±∆0

√
�2 − 1 + 2∆0

1− 2∆0 . (30)

One sheet has real poles for ∆0 ≥ (�2 + 1)/2. For ∆0 = (�2 − 1)/2 the GF
has a second order pole at ω = (�2 +1)/2�. When ∆0 increases, this second
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order pole is split into two first order poles, one going right (we assume
� > 0) and at ∆0 = 1/2 becoming a pole at the infinity. For ∆0 > 1/2 this
pole appears for ω < −1. The second first order pole, when ∆0 increases
initially approaches the point ω = 1, and at a further increase of ∆0 moves
in the opposite direction and asymptotically goes to infinity.

For ∆0 < (�2 + 1)/2 the second sheet has two complex poles of the
first order. For ∆0 ¿ 1 the pole in the lower half-plain is situated at
�−i∆0

√
1− �2 and is just the FGR pole mentioned above. The poles position

is presented on Fig. 2.

Figure 2: Position of poles of the GF for the Hamiltonian (27) for different
values of ∆. The real poles appear on the standard sheet, the complex poles
on the second sheet.

In general case the points Eb and Et are the Σ(ω) branch points. The
standard approach consists of making the cut along the straight line between
the branch points and considering only one sheet, thus making the analytic
continuation into the lower ω half-plain by continuing Σ(ω) along the curves
which circumvent the right branch point clockwise and the and the left
branch point anti-clockwise On the other hand, we could use a different
continuation, along the curve passing through the part of real axis between
Eb and Et. In this case, Eq. (26) which is valid in the perturbative regime
near the point ω = � in the upper half-plane is valid in lower half-plain also,
thus giving a pole in a different sheet of the multivalued propagator.

This pole becomes important if the analytical continuation of g(ω) into
the lower half-plain is done by making the cuts from the branch points
to infinity and continuing the function between the cuts along the curves
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passing through the part of real axis between Eb and Et, and outside as we
did it previously. This way to make an analytic continuation, and hence to
calculate the integral (6) is presented on Fig. 3.

Figure 3: Alternative way to analytically continue the propagator into the
lower half-plane. The arrows show the curves of analytical continuation in
between the cuts and outside. Radius of the big arc and length of the cuts
go to infinity.

Due to the exponential decrease of the integrand on the vertical line,
in contrast to the oscillatory dependence on the real axis, such analytic
continuation is more convenient for the numerical calculations for the large
t behavior of the non-decay amplitude.

The second example is defined by the equation:

∆(E) = ∆0 = const for |E| ≤ 1. (31)

Thus we get

Σ(ω) = ∆0 log

µ
ω + 1

ω − 1
¶
. (32)

The Riemann surface has an infinite number of sheets. The standard sheet
is obtained by defining log as having the phase −π just above the real axis
between −1 and 1. This sheet always has two real poles, one for ω > 1, and
the other for ω < −1.

For the pedagogic purposes let us presents the results of numerical cal-
culations for the model considered. The time will be measured in units of
the FGR time τ

1/τ = 2π∆0. (33)
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For the sake of definiteness we will chose � = −.4. For ∆0 = .02 (see Fig. 4)
we observe the FGR regime, say, up to t = 9.

Figure 4: Survival probability as a function of time for ∆0 = .02.

For ∆ = .1 (see Fig. 5) the FGR regime is seen up to t = 3.

Figure 5: Survival probability as a function of time for ∆0 = .1.

For ∆0 = .2 (see Fig. 6) the FGR regime is absent.
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Figure 6: Survival probability as a function of time for ∆0 = .2.

The Rabi oscillations we see already at Fig. 5 and still more vividly at
Fig. 6.

Dedication

With great pleasure I recall my meetings with I. Vagner and our talks both
about physics, and life in general. In addition to being a very good physi-
cist, he also was a very good educator, investing a lot of time and effort in
his pedagogical activities. So I would like to dedicate this my modest con-
tribution, mainly of pedagogical nature, to the memory of I. Vagner, who’s
untimely death I deeply regret.
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