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Abstract

A complete description of the quantum mechanics of an electron
in magnetic fields is presented. Different gauges are defined and the
relations between them are demonstrated.

PACS: 73.20.Fz, 72.15.Rn

1 Quasiclassical quantization

The classical Larmor rotation of a charged particle in a homogeneous exter-
nal magnetic field is presented in Fig. 1

Consider first the quantization in the semiclassical approximation [1, 2].
The motion of a charge in a magnetic field is periodic in the plane per-
pendicular to the field and, hence, can be quantized by using the standard
Bohr-Sommerfeld quantization condition which after the Peierls substitution

p→ p−e
c
A
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yields I ³
mv − e

c
A
´
· dr = (n+ γ)h (1)

where the vector potential A is related to the magnetic field by

B =∇×A (2)

e and c stand for the electron charge and light speed correspondingly. We
can take γ = 1

2 as is the case in the original Bohr-Sommerfeld quantization
rule, but its real value follows from an exact solution of the Schrödinger
equation, which will be discussed later.

Figure 1: The classical Larmor rotation of a charged particle in a homoge-
neous external magnetic field.

To estimate the integrals in Eq. (1) we have to take into account that in
the plane perpendicular to the magnetic field the classical orbit of a charged
particle is a circumference of the Larmor radius ρL along which the particle
moves with the velocity | v |=Ω ρL, where the Larmor frequency is given
by relation Ω= eB

mc . After that the integrals in Eq. (1) can be calculated as
follows: I

A · dr =

Z
[∇×A] · n̂ds = πρ2LB , (3)I

mv · dr = 2πρ2L
eB

c
. (4)
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Now from Eqs. (1), (3) and (4), it is easy to see that the Larmor ra-
dius ρL,n is quantized, i.e. takes a discrete set of values depending on the
integer n :

ρL,n =

s
2~
mΩ

µ
n+

1

2

¶
. (5)

Figure 2: Larmor orbits in XY plane.

These quantized electron orbits are shown in Fig. 2. In the quasiclassical
limit under consideration (i.e., for n À 1), the Larmor orbit size depends
both on the strength of the magnetic field and the quantum number n. This
dependence is given by the relation

ρL,n∝
r

n

B
. (6)

Formally, small values of the quantum number n are beyond the scope
of the quasiclassical approximation. On the other hand, it is known that in
the case of harmonic oscillator the Bohr-Sommerfeld quantization rule gives
an exact formula for the energy spectrum. Since the motion of a particle
along the circumference with the constant velocity is equivalent to harmonic
oscillations, we will see below that one can consider n as an arbitrary integer
or zero. Thus, putting n = 0 (i.e. in the extreme quantum limit) the Larmor
orbit radius becomes equal to

ρL,0 =

r
c~
eB
≡
r
Φ0
2πB

. (7)
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Two fundamental quantities appear in the right hand side of this equa-
tion: the magnetic flux quantum Φ0 = hc/e which depends only on the

world constants and the magnetic length LH =
q

c~
eB . The flux quantum is

the lowest portion by which the magnetic flux through some current car-
rying loop can be changed. This has a far reaching consequences, as we
will see later. But now let us turn to our problem of the energy spectrum
calculation. With this end in view, consider the above quantization in the
momentum p-space. The classical equation of motion yields

dp

dt
=

e

c

·
B× dr

dt

¸
. (8)

Figure 3: Quantized orbits in KxKy plane.

One can see from this equation that: (i) the electron orbit in the p-space
is similar to that in the real space (in x − y plane, when field is directed
along the z−axis as it is shown in Figs. 2 and 3), (ii) in the p-space the
orbit is scaled by the factor eB/c, and (iii) the orbit is rotated by φ = π/2.
Integrating the above equation of motion we obtain

pn =
eB

c
ρL,n =

s
2m~Ω

µ
n+

1

2

¶
. (9)

We see that quantization of the orbit radius means also quantization of
the momentum p which, in turn, implies quantization of the kinetic energy
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of the particle. For the quadratic dispersion relation, E = p2/2me, we have

En =
p2n
2me

= ~Ω
µ
n+

1

2

¶
. (10)

This result indicates that the kinetic energy of a charged particle in the
x − y plane is quantized in the external magnetic field and the separation
between the nearest quantum levels is ~Ω. Equation (10) is known in the
literature as the Landau formula which describes equidistant quantum spec-
trum of a charged particle in external magnetic field also called Landau
levels.

Thus, the electron motion perpendicular to the magnetic field is quan-
tized, but the motion along the magnetic field is unaffected by the magnetic
field and remains free. The corresponding kinetic energy spectrum in the
z-direction is given by

Ez =
p2z
2m

. (11)

Putting together Eqs. (10) and (11) we arrive at the dispersion equation

En(pz) = ~Ω
µ
n+

1

2

¶
+

p2z
2m

. (12)

This energy spectrum is shown in Fig. 4.

Figure 4: The Landau levels. Energy dispersion.
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To obtain a more concrete idea about the size of the gap between two
adjacent Landau levels, we estimate itthe Landau gap. In a typical metal in
the field B of the order 10T and taking electron mass me ' 10−27g, one can
estimate the gap roughly as ~Ω = ~eB/mec ' 1.5 ∗ 10−15erg ' 15K. In a
semiconductor as GaAs, for example, the effective mass of electron may be
much smaller , saym∗ ' 0.07me. The Landau gap in this case is of the order
of 200K in the field of the same strength B = 10T . In the GaAs/AlGaAs
interface electrons are trapped and behave as a two dimensional electron gas.
The energy spectrum of the electrons is completely discrete if the external
magnetic field is applied perpendicular to the interface. This results in
unusual magnetotransport phenomena which we will discuss later in more
detail.

As a result of quantization, all electron states are quenched into the
Landau levels. Therefore, each Landau level is highly degenerated. The
degeneracy of the Landau level g(B) can be calculated as the number of
electronic states between the adjacent Landau levels

g (B) = g2d~Ω = 2S
B

Φ0
, (13)

where

g2d =
mS

π~2
(14)

is the density of states for a two dimensional electron gas with quadratic
dispersion (see Eq. (12)).

A schematic illustration of the density of states is shown in Fig. 5. We
can see from the Eq. (13) that the degeneracy of a Landau level is related
to the number of the magnetic flux quantum Φ0 piercing the sample of area
S in a magnetic field B. Factor 2 in the g (B) comes from the spin degree of
freedom. The energy dependence of the 2D density of states shown in Fig.
5 can be obtained by counting the number of states within a thin ring of the
width dk and radius |k| in the k-space.

The density of states in k-space is then 2S/4π2

2
S

4π2
2πkdk = g(E)dE , (15)

where the factor 2 accounts for the spin. For free electrons with the quadratic
dispersion E = ~2k2/2m we obtain the following expression for the density
of states

g(E) =
dN

dE
=

Sm

π~2
. (16)
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Figure 5: The density of states for a two dimensional electron gas with
quadratic dispersion.

It is clear from Eq. (16), that the density of states for a free electron
gas in two dimensions is energy independent. Because the Fermi energy EF

is obtained by filling electron states up from the lowest energy, the EF is
related to the areal density ns and the density of states as

EF =
ns
g2d

=
π~2

m
ns. (17)

We see, therefore, that the Landau spectrum for free electrons in the 2D
case can be obtained on the basis of elementary quasiclassical consideration.
In metals and semiconductors the dispersion relation for the quasiparticles,
“the conducting electrons”, usually far from being a quadratic function of the
quasimomentum. The trajectory of the conduction electrons in an external
magnetic field is determined by cross section of the Fermi surface, which as a
rule is rather complex. Nonetheless, the quasiclassical quantization method
works well in this case too and we consider them later in this paper.
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1.1 The Landau quantization as a flux quantization prob-
lem. The quasiclassical approach. The Lifshitz-Onsager
quantization rule

We shall discuss in this section a relation between the Landau quantization
and the flux quantization. It is known that the energy of a particle moving
along the closed classical orbit becomes quantized in the quantum limit.
A free 2D electron with the dispersion relation E = p2/2m in external
magnetic field moves along the circle of the Larmor radius with the cyclotron
frequency Ω = eB/mc. Since the energy is the integral of motion in this case
the trajectory of the electron in the momentum space is a circumference of
the radius P =

√
2mE too. The quantization of this motion, as was shown

before by many ways, yields the Landau energy spectrum

En = ~Ω (n+ 1/2) . (18)

Let us rewrite this formula in the following fashion:

Sp(E) =
2π~eB

c
(n+ 1/2) (19)

where Sp(E) = πP 2 is the area of a circle of the radius P =
√
2mE along

which the electron moves in the momentum space. On the other hand,
it follows from the classical equation of motion, Eq. (8), that trajectories
in the coordinate and momentum spaces are of the same form but turned
related to each other by the right angle and scaled by the factor eB/c. The
latter means that the radii of the circumferences in the coordinate R and
momentum P spaces are related by the condition R = cP/eB. Taking this
into account we can rewrite the Landau quantization formula in the following
fashion:

SR(E) =
2π~c
eB

(n+ 1/2) (20)

where SR(E) = πR2(E) is the area inside the circle of the radius R(E) =
cP (E)/eB in the coordinate space. We can calculate then the flux through
this circle ΦR(E) = SR(E)B and see that this quantity is quantized

ΦR(E) = Φ0 (n+ 1/2) (21)

where Φ0 is the flux quantum. Therefore, we see that both in the coordinate
and momentum spaces the Landau quantization means the quantization of
the area inside the closed classical trajectory but with the different steps:
∆SR = 2π~c/eB in the coordinate space and ∆SP = 2π~eB/c in the mo-
mentum space. In the coordinate space the Landau quantization also means
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the flux quantization through the closed loop with the quantum Φ0. The
above quantization rules can be easily generalized to the case of an arbi-
trary electron dispersion which is the usual case in the crystal solids like
metals and semiconductors. The quantization of the Sp(E) is known in the
literature as the Lifshitz-Onsager quantization rule.

The Lifshitz-Onzager quantization rule is a direct consequence of the
commutation rules between the momentum components p̂α = (~/i)∂/∂xα+
(e/c)Aα in the external magnetic field B directed along the Z-axes of the
Cartesian coordinate system:

[p̂x, p̂y] =
e~
c
B, [p̂y, p̂z] = [p̂x, p̂z] = 0 (22)

(where Aα is the vector-potential). These equations mean that the momen-
tum p̂x and the coordinate q̂x = cp̂y/eB satisfy the stand commutation rule
[p̂x, q̂x] = ~/i so that the quasiclassical quantization rule holdsI

pxdqx = 2π~(n+ γ). (23)

This equation is exactly the Lifshitz-Onzager quantization rule in as
much as the integral

H
pxdpy = Sp(E, pz) equals to the cross-section of the

Fermi surface by the plane pz = constant.

S(E, pz) =
2π~eB

c
(n+ γ). (24)

We can obtain Eq. (24) within the Feynman scheme since only one
classical path connects two arbitrary points p0 and p1 at the trajectory
which is a cross-section of the Fermi surface. The appropriate Feynman
amplitude is given by

exp

µ
i
Scl
~

¶
= exp

µ
i

c

eB~

Z p1

p0

px(p
0
y)dp

0
y

¶
, (25)

where Scl denotes the classical action at the segment between the points p0
and p1. If the amplitude to find an electron in the point p0 at the trajectory
is C(p0) then an amplitude to arrive at the same point of the Fermi-surface
cross-section after the one complete rotation is C(p0) exp[iϕ(E, pz) + iα]
where

ϕ(E, pz) =
c

eB~

I
px(p

0
y)dp

0
y =

c

eB~
S(E, pz) (26)

and α is some arbitrary constant. Equating these amplitudes and taking
α = π we arrive at the Lifshitz-Onsager quantization rule of Eq. (24). In
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solids the Fermi surface repeats periodically along the crystal symmetry
directions. This means that in the external magnetic field the cross-section
of the whole energy surface by the plane pz =constant yields a network
of periodic classical orbits. In some organic conductors and conventional
metals this 2D network consists of closed orbits connected by the magnetic
breakdown centers. We will consider a generalization of the Lifshitz-Onsager
quantization rule to this problem later.

2 Gauge invariant formulation

2.1 The gauge invariance in a classical-analogy approach

In this section we discuss the correspondence between the classical descrip-
tion of rotation of a charged particle in external magnetic field and the el-
ementary quantum mechanical consideration of this motion. We start with
the classical description of the Larmor orbit.

Figure 6: The classical Larmor orbit where ρ20 = x20+y20 describes the center
of rotation and ρ is the radius vector directed to the rotation point.

In the quantum mechanical approach, the classical dynamic variables
are generalized to be the quantum operators. In the classical picture, the
Larmor radius is given by ρL = v/Ω . The classical Larmor orbit is shown
in Fig. 6, where ρ20 = x20 + y20 describes the center of rotation and ρ is the
radius vector directed to the rotation point. These vectors are related by
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the equation of motion

[Ω× (ρ− ρ0)] = v⊥ . (27)

Now turn to the quantum mechanical description in which the classical
variables we defined above becomes operators. Proceeding in that fashion
we introduce first the operator for the center of orbit

ρ̂20 = x̂20 + ŷ20 (28)

where coordinates and velocity components are Hermitian operators

x̂0 = x̂− v̂y
Ω

, ŷ0 = ŷ +
v̂x
Ω

. (29)

Analogous, the Larmor radius operator is given by

ρ̂2L =
1

Ω2
¡
v̂2x + v̂2y

¢
. (30)

Let us discuss now some necessary for further commutation relations.
Using the commutation identity relation

[Â2, B̂] ≡ Â[Â, B̂] + [Â, B̂]Â (31)

and taking into account that the Hamiltonian of the charged particle in the
external magnetic field is given by

Ĥ =
1

2m

³
p̂− e

c
Â
´2

(32)

with the momentum operator p̂ = ~
i∇, we have

v̂ = [Ĥ, r̂] =
1

m

³
p̂− e

c
Â
´
. (33)

The commutation relation between the components of the velocity op-
erator is given by

[v̂i, v̂k] =
ie~
m2

�ikcBc . (34)

We have obtained this result by direct calculations:

[vi, vk] =
ie~
m2

½
∂Ak

∂xi
− ∂Ai

∂xk

¾
=

ie~
m2
∇×A =

ie~
m2

�ikcBc .
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It is straightforward to see that the commutation relation for the coor-
dinate operators describing the center of Larmor rotation is given by

[x̂0, ŷ0] = −iL2H . (35)

The quantity LH in Eq. (35), the magnetic length, which is determined
by L2H = ~c/eB. The commutation relation between the velocity and coor-
dinate operator components is given by

[v̂i, x̂k] = − i~
m
δik . (36)

The operators
x̂0 , ŷ0 , ρ̂20 , ρ̂2L (37)

are integrals of motion because these operators commute with the Hamil-
tonian h

Ĥ, x̂0

i
=
h
Ĥ, ŷ0

i
=
h
Ĥ, ρ̂20

i
=
h
Ĥ, ρ̂2L

i
= 0, [ρ̂0, ρ̂L] = 0 . (38)

The commutation relations of Eq. (38) are analogous to those of the har-
monic oscillator problem. We explore this similarity in what follows for
finding the energy spectrum of the electron in a magnetic field. With this
purpose in mind we discuss here the correspondence between the Larmor
rotation and harmonic oscillator in a more detail.

It is natural to start with the Hamiltonian for the harmonic oscillator
problem written in terms of the momentum P and coordinate Q

H =
P 2

2m
+

kQ2

2
. (39)

In quantum mechanics P and Q become operators P̂ and Q̂ which satisfy
the commutation relation

[P̂ , Q̂] = −i~ . (40)

The energy spectrum for this problem is then given by

En = ~ω
µ
n+

1

2

¶
, (41)

where ω is the oscillator frequency

ω =

r
k

m
. (42)
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By using the commutation relations Eq. (38) and Eq. (36), we can make
the following correspondence between the Larmor rotation parameters and
the operators in the harmonic oscillator problem

v̂x ⇔ P̂ ; v̂y ⇔ Q̂. (43)

The parameters of the Larmor rotation and the harmonic oscillator cor-
respond as follows

k ⇔ 2

Ω2
; ~⇔ |e|~B

m2c
; m⇔ Ω

2

2
. (44)

By using this correspondence relations, it is straightforward to see that
we have the energy spectrum En = ~Ω(n+ 1/2). Because the Hamiltonian
for rotating particle is given by

Ĥ =
mv̂2⊥
2

=
m(v̂2x + v̂2y)

2
, (45)

and taking into account relation ρL = v⊥/Ω, the spectrum of the Larmor
radius operator is turned out to be discrete and determined by the equation¡

ρ2L
¢
n
=

2

mΩ2
En = L2H(2n+ 1) . (46)

Similarly the discrete spectrum for the center of rotation operator may
be obtained by using the definition of the ρ20 and the commutation relation
between the coordinates of the center of rotation:

(ρ20)k = L2H(2k + 1) (47)

The discreteness of the coordinates (ρL)n and (ρ0)n yield the following
picture for the electron orbits shown in Fig. 7.One can see the manifold
of concentric circles of discrete radius (ρ0)n centered at the origin of the
polar coordinates and with the Cartesian coordinates x0 and y0 which de-
fine ρ0. These coordinates are analogous to the q and p operators in the
one-dimensional harmonic oscillator problem. Therefore, the Heisenberg
uncertainty principle can be applied to them to yield

∆x0∆y0 ≥ L2H
2

. (48)

The distribution of centers of the electron orbit corresponding to a given
c can be represented geometrically as a manifold of circles with the radius
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Figure 7: The manifold of concentric circles of discrete radius (ρ0)n centered
at the origin of the polar coordinates and with the Cartesian coordinates x0
and y0 which define ρ0.

' L2H(2c + 1) as shown in Fig. 7. The quantum mechanical analog of the
Larmor orbit is given by the equation

ρ̂2L = (x̂− x̂o)
2 + (ŷ − ŷo)

2 (49)

and the eigenvalues of the operator ρ̂2L are determined by the relation

(ρ2L)n = (2n+ 1)L
2
H , (50)

where n = 0, 1, 2, ... The geometric meaning of Eqs. (49) and (50) is illus-
trated in the Fig.7.

We can introduce now the angular momentum operator related to the
Larmor orbital motion as follows

Lz =
~L2H
2

¡
ρ20 − ρ2L

¢
. (51)

Its eigenvalues lz are quantized and given by the relation

lz = sgn(e)~(c− n) = ~mz. (52)

Summing up the quasiclassical consideration of the Landau problem we
must say that quantized Larmor orbitals are only an approximations to the
Landau orbitals which can be obtained only on the basis of the Schrödinger
equation. This will be done in the next section. But before doing this we
consider briefly the gauge invariance in the quantum mechanics.
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2.2 The gauge invariance of the Schrödinger equation in an
external magnetic field

The phase of the wave function should not affects the observable quantities
in quantum mechanics. In particular, the average of the Hamiltonian of a
particle,

(Ψ, ĤΨ) =

Z ·
~2

2m
| ∇Ψ |2 +U(r) | Ψ|2

¸
dr (53)

should be invariant under the substitution Ψ → Ψeiϕ, where ϕ = ϕ (r)
is an arbitrary phase. The second term in Eq. (53) is invariant, but the
first one is not because of the contribution of the gradient ∇ϕ. To make it
invariant we must introduce some vector field A compensating the gradient
term (i.e. containing ∇ϕ) and require that this field does not change the
magnetic field B as a result of the gauge transformations. Both conditions
are satisfied under the following substitution:

~2

2m
| ∇Ψ |2→ 1

2m
| DAΨ |2,

where DA = (p̂−e
cA) and the magnetic field is related to the vector A

by the standard equation B =rotA, so that B does not changes under the
gradient transformation A→ A+∇χ with χ being arbitrary function of r.
It is easy to check now that the quantityZ ·

1

2m
| DAΨ |2 +U(r) | Ψ |2

¸
dr

is invariant under the gauge transformationΨ0 = Ψeiϕ if we also take χ = ~
cϕ

in the gradient transformation A0= A+∇χ. Another words,
1

2m
| DA0Ψ0 |2= 1

2m
| DAΨ |2 .

We see, therefore, that the formal Peierls substitution p→ p−e
cA, by

which a magnetic field is introduced into Hamiltonian dynamics, finds its
theoretical justification only on the basis of the quantum mechanics. It
is a direct consequence of the gauge invariance under the transformation
Ψ0 = Ψeiϕ.

3 The Landau problem in the Landau gauge

Contrary to the elementary consideration of the previous sections which
deals primarily with the external magnetic field, the solutions of the Schrödinger
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equation depends on the choice of the gauge for the vector potential. Two
gauges are most frequently used in the literature: the Landau gauge and
the symmetric gauge. Let us start with the Landau gauge.

The Schrödinger equation for the charged particle in an external mag-
netic field B reads

ĤΨE = EΨE, (54)

where the Hamiltonian of a particle is

Ĥ =
1

2m

³
p̂− e

c
A
´2

. (55)

In the Landau gauge A = (−By, 0, 0) only the Ax component of the

vector-potential is nonzero, so that
h
Ĥ, p̂x

i
=
h
Ĥ, p̂z

i
= 0. The latter means

that the momentum components are the quantum integrals of motion and
ΨE in Eq. (54) should be also the eigenfunction of the operators p̂x, and p̂z,
which means that

ΨE (x, y, z) = ϕE(y) exp

·
i

~
(pxx+ pzz)

¸
. (56)

Substituting (56) into (54), we have

Ĥ (y)ϕE0(y) = E0ϕE0(y) (57)

with

Ĥ (y) = − ~
2

2m

d2

dy2
+

mΩ2

2
(y − y0)

2 , (58)

E0 = E − p2z
2m

, (59)

where Ω = eB/mc is the cyclotron frequency, and

y0 = −cpx/Be (60)

denote the coordinate of the center of the Landau orbit.
Equations (57) and (58) shows the equivalency of the Landau problem

to the problem of the quantum oscillator.
Let us introduce a dimensionless variable

q =

r
mΩ

~
(y − y0) =

y − y0
LH

. (61)
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The quantity LH =
p
~c/eH known as the magnetic length, plays an

important role of a spatial scale in different problems. We found that the
Schrödinger equation for the charged particle in an external magnetic field
with the Hamiltonian of Eq. (55) can be written as follows

ĤΨEn,px,pz = En(pz)ΨEn,px,pz . (62)

The eigenvalues of the Eq. (81) are known in the literature as the Landau
energy spectrum

En(pz) = ~Ω(n+
1

2
) +

p2z
2m

(63)

and the corresponding eigenfunctions are given by

ΨEn,px,pz = ϕn

µ
y − y0
LH

¶
exp

i

~
(pxx+ pzz) . (64)

These wave functions depend on a three quantum numbers n, px and
pz whereas the energy En(pz) only on the two of them. This means the
degeneracy of the spectrum on the momentum px which physically is due to
the independence of the Landau levels En(pz) on the position of the Larmor
orbit center y0 = − cpx

eB .
The degeneracy g(B) of the Landau level En (pz) can be calculated as

a number of states belonging to En (pz) and having different values of the
momentum px, which yields:

g(H) =
Lx∆px
2π~

=
LxLyBe

2π~c
=
Φ

Φ0
. (65)

Here Lx, Ly are the dimensions of a sample in the plane perpendicular
to the field B, ∆px = LyBe/c is the maximal value which the component px
can take (it corresponds to the extreme limit for the Larmor orbit position
y0 = Ly), Φ0 = ~c/e is the flux quantum, and Φ = LxLyB is the total flux
through the sample.

The wave function ϕn(q) oscillates due to the oscillations of the Her-
mitian polynomials Hn(q) which have n zeros as a function of the variable
q. This is a manifestation of the so called oscillation theorem. This theorem
says that the number of zeroth of the wave function is equal to the number
of the energy level n of a particle in the potential well counting from the
ground state and provided that n = 0 is prescribed to the ground state. One
can easily calculate a few first polynomialsHn(q) directly from the definition
of Eq. (80) to obtain:
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H0(q) = 1, H1(q) = 2q, H2(q) = 4q
2 − 2.

3.1 The density of states

Consider now another important characteristic of the Landau problem - the
density of states. According to the definition the density of states can be
calculated as a sum over the Landau energy spectrum

g(E) = 2
Φ

Φ0

X
n

Z
Lzdpz
2π~

δ (E −En(pz)) . (66)

The factor 2 Φ
Φ0
appears here because of the degeneracy of the Landau

levels on the spin and orbit position. The integration on pz in Eq. (66) is
trivial because of the delta-function. Completing it, we have

g(E) =
X
n

gn(E). (67)

The quantity gn(E) is the density of states in three dimensions for the
Landau level with the quantum number n

gn(E) =
V
√
2m3/2

π2~3
~Ω¯̄̄q

E − ~Ω ¡n+ 1
2

¢¯̄̄ , (68)

where V is the volume of the sample. We see that the density of states g (E)
in the Landau problem has a periodic set of the square-root singularities.
This type of the singularity is typical for a one-dimensional system. Thus,
for fixed value of the quantum number n a motion of electron is effectively
one-dimensional. We, therefore, may calculate that external magnetic field
effectively reduces the dimensionality of the system.

3.2 The momentum representation

It is well known that the unitary transformation does not change the eigen-
values of the Hamiltonian. On the other hand, sometimes a proper choice of
the unitary transformation makes a solution of the eigenproblem much more
easier. Many eigenvalue problems become simply in the momentum repre-
sentation since this approach is, in essence, nothing but a Fourier method
known in conventional mathematical physics. In this connection it is inter-
esting to note that in the Landau problem the Hamiltonian given by Eq.
(58) is invariant with respect to the momentum representation. Indeed, in
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the momentum representation the momentum operator becomes just a vari-
able, p̂ = p, while the coordinate becomes a differential operator ŷ = i~∂/∂p.
Thus, making first the coordinate shift y+y0 → y we can rewrite the Hamil-
tonian of Eq. (58) in the momentum representation as follows

Ĥ =
p2

2m
− mΩ2~2

2

∂2

∂p2
. (69)

This Hamiltonian, after the substitution

q = p/
√
m~Ω, (70)

and introduction of the operators

â =
1√
2

µ
q +

d

dq

¶
, â+ =

1√
2

µ
q − d

dq

¶
,
£
â, â+

¤
= 1

takes exactly the form of Eq. (72). Therefore, there is no need to solve the
problem anew since the energy spectrum and the wave functions remain the
same with the only difference that q in ϕn(q) of Eq. (81) is given now by
Eq. (70).

For further consideration it is useful to define a couple of Hermitian
conjugate operators â and â+

â =
1√
2

µ
q +

d

dq

¶
, â+ =

1√
2

µ
q − d

dq

¶
,
£
â, â+

¤
= 1. (71)

In terms of these operators the Hamiltonian (58) takes a very simple
quadratic form

Ĥ = ~Ω
µ
â+â+

1

2

¶
. (72)

We begin the analysis of this Hamiltonian from the definition of the
lowest energy eigenstate state, also known in the quantum theory as the
ground state. To find the ground state let us consider the average of the
Hamiltonian (58)³

ϕE, ĤϕE

´
=
~Ω
2
(ϕE, ϕE) + ~Ω (âϕE, âϕE) , (73)

which should be real and positive number since Ĥ is Hermitian operator.
The ground state wave function must minimize Eq. (73) and one can easily
conclude that this holds under the condition
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âϕ0 = 0, (74)

which nullifies the second term in the right-hand-side of the Eq. (73) and

thereby minimizes quantity
³
ϕE, ĤϕE

´
. The differential equation (74) has

a trivial solution, which, after normalization by the condition (ϕ0, ϕ0) = 1,
yields

ϕ0(q) = π−1/4 exp
µ
−q

2

2

¶
. (75)

One can check then by a direct substitution, that the wave function

ϕn =
â+

n

√
n!
ϕ0 (76)

is the normalized eigenfunction of the Hamiltonian (72)

Ĥϕn = Enϕn (77)

with the eigenvalue

En = ~Ω
µ
n+

1

2

¶
. (78)

The explicit form for the function ϕn(q) directly follows from Eqs. (71)
and (76) which yield

ϕn(q) =
1√

n!2nπ1/2

µ
q − d

dq

¶n

e−
q2

2 . (79)

One can rewrite the wave function of Eq. (79) in a conventional form
with the help of the Hermitian polynomials Hn(q)

Hn(q) = (−1)n
µ
eq

2 dn

dqn
e−q

2

¶
. (80)

The final result is:

ϕn(q) =
Hn(q)√
n!2nπ1/2

e−
q2

2 . (81)

Let us summing up the results for the Landau problem.
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3.3 The uncertainty principle in the Landau problem

In this section we shall discuss briefly the uncertainty principle for the coor-
dinate and momentum in the Landau problem. Consider for simplicity the
ground state. The wave function of the ground state both in the coordinate
and momentum representation is

ϕ0(q) = π−1/4 exp
µ
−q

2

2

¶
(82)

with q = y−y0
LH

in the coordinate representation and q = pLH
~ in the momen-

tum representation. This means that the coordinate uncertainty (the width
of a strap in the y -axes direction where the probability to find a particle
is appreciable) equals approximately to the ∆y ' LH . The corresponding
uncertainty in the momentum of a charged particle in the external magnetic
field is ∆p ' ~/LH . Thus, the product of these uncertainties equals to

∆p∆y ' ~. (83)

Having at hand the wave functions we can calculate the above uncer-
tainties exactly. To do this we will proceed in such a fashion. Firstly, it
follows directly from the definition of Eq. (76) that the eigenfunctions ϕn
obey a simple recurrent relations:

â+ϕn =
√
n+ 1ϕn+1, (84)

âϕn =
√
nϕn−1. (85)

On the other hand, from Eq. (71) we have a couple of equations which
express the coordinate and the momentum operators in terms of the quan-
tities â+ and â :

ŷ =
LH√
2
(â+ + â), (86)

p̂y =
~

iLH

√
2
(â+ − â). (87)

Note that Eqs. (86)-(87) are valid both in the coordinate and momentum
representations. Using these equations and taking into account the orthog-
onality of the basis ϕn, we can calculate the uncertainties in question with
the help of the formal quantum mechanical definitions:

∆yn =
p
(ϕn, ŷ

2ϕn)− (ϕn, ŷϕn)2, (88)
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∆pn =
p
(ϕn, p̂

2ϕn)− (ϕn, p̂ϕn)2. (89)

Elementary calculations then yields

∆yn = LH

r
n+

1

2
, (90)

∆pn = ~/LH

r
n+

1

2
. (91)

Thus, the uncertainty principle for the arbitrary n state in our problem
reads

∆yn∆pn = ~
µ
n+

1

2

¶
. (92)

Putting the integer n = 0 in Eq. (92) we see that our qualitative esti-
mation of uncertainties for the ground state (83) only by the factor one half
differs from the exact formula (92).

4 The coherent state

The eigenfunction of the operator â defined in the previous section is known
in the literature as the coherent state which minimize the product of uncer-
tainties of the coordinate and momentum of a particle. Let us define the
coherent state ψα by the equation

âψα = αψα. (93)

The eigenvalue α is a complex number since â is non-Hermitian operator.
Writing ψα in the Landau basis ϕn, we have

ψα =
X
n

Cα(n)ϕn. (94)

Taking advantage of relations (84) and (85) we arrive at the following
recurrent equation for the coefficient Cα(n) = (ϕn, ψα):

Cα(n) =
α√
n
Cα(n− 1). (95)

Using the recurrent equation (95) and normalizing the coherent state by
condition (ψα, ψα) = 1 we may write ψα as a series
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ψα = exp

µ
− | α

2 |
2

¶ ∞X
n=0

αn√
n!
ϕn, (96)

where exp
³
− |α|22

´
is the normalization coefficient.

One can recast the coherent state vector (96) in a more compact form

ψα = eαâ
+−α∗âϕ0. (97)

by taking advantage the well-known operator identity

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], (98)

which holds because Â = αâ+ and B̂ = −α∗â in our case and the commu-
tator

h
Â, B̂

i
=| α |2 is the c-number (not operator).

It is easy to check straightforward that the coherent states are nonorthog-
onal

(ψα, ψβ) = exp

µ
−1
2

¡| α |2 + | β |2 +α∗β¢¶ . (99)

In the case of | α− β |À 1 they are approximately ortogonal in as much
as the absolute value of the scalar product (99) is small

| (ψα, ψβ) |= exp
µ
−1
2
| α− β |

¶
¿ 1. (100)

The set of the coherent states is complete. The completeness means that
following identity holds for the wave vector ψα (q):

1

π

Z
d2αψ∗α(q)ψα(q

0
) = δ

³
q − q

0´
. (101)

This expression immediately comes out from the Eq. (96) and the com-
pleteness of the Landau basis functions ϕn(q):X

n

ϕn(q)ϕn(q
0
) = δ

³
q − q

0´
. (102)

All the equations considered so far are valid both in the coordinate and
momentum presentations. In the coordinate presentation the quantity q is
given by the Eq. (61) and in the momentum presentation by Eq. (70) .

Using an explicit form for the Landau basis functions ϕn(q) ( see Eq.
(81)) and substituting them into the Eq. (96), we have
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ψα(q) = π−1/4 exp
µ
− | α |

2

2
− q2

2

¶ ∞X
n=0

µ
α√
2

¶n Hn(q)

n!
. (103)

The sum in Eq. (103) can be easily calculated with the help of the
generic function relation for the Hermitian polynomials

e2xt−t
2
=

∞X
n=0

Hn(x)
tn

n!
. (104)

This equation simply means that the coefficients of the power series ex-
pansion with respect to the variable t for the function standing in the left-
hand-side are equal to the Hermitian polynomials given by Eq. (80). This
statement can be easily checked by direct calculations. Thus, taking into
account the Eq. (104) one may recast the Eq. (103) into the following
Gauss-like form

ψα(q) = π−1/4 exp
µ
− | α |

2

2
+

α2

2

¶
exp

Ã
−
µ

q√
2
− α

¶2!
. (105)

This Gauss-like wave function is known to minimize the uncertainty re-
lation for the coordinate and momentum (i.e. makes the right hand side in
the equation ∆yα∆pα = ~/2 exactly equal to the lowest value ~/2).

Such a wave function was first introduced by Schrödinger under the name
of a coherent state. We see that the Schrödinger definition of the coherent
state and that given by the Eq. (93) are identical in essence.

One of the practical advantages of the coherent state ψα is that the
matrix elements of the type

¡
ψβ, â

+nâmψα

¢
can be calculated very easy in

the basis of the coherent states. For example, it is easy to check that¡
ψβ, â

+nâmψα

¢
=
¡
ânψβ, â

mψα

¢
= (β∗)2 αm

¡
ψβ, ψα

¢
. (106)

With the help of this equation we have from Eq. (72)³
ψα, Ĥψα

´
= ~Ω

µ
| α |2 +1

2

¶
. (107)

On the other hand, the average values of the operators x̂ and p̂ in the
coherent state ψα are equal to

(ψα, x̂ψα) =

µ
2~
mΩ

¶1/2
Reα; (ψα, p̂ψα) = (2m~Ω)

1/2 Imα. (108)
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Combining Eq. (107) and (108) we obtain

³
ψα, Ĥψα

´
=

mΩ2

2
(ψα, x̂ψα)

2 +
1

2m
(ψα, p̂ψα)

2 +
~Ω
2
. (109)

This expression, written in terms of averaged x̂ and p̂ operators, is very
similar to the energy of the classical oscillator

E =
mΩ2

2
x2 +

p2

2m

and demonstrates a closeness of the coherent state description to the clas-
sical approach. Another manifestation of this, as was note above, is the
fact that ψα minimizes the uncertainty principle for the coordinate and the
momentum. To see this, we can directly calculate these uncertainties in the
coherent state, which yields:

δxα =

q
(ψα, x̂

2ψα)− (ψα, x̂ψα)
2 =

µ
~

2mΩ

¶1/2
, (110)

δpα =

q
(ψα, p̂

2ψα)− (ψα, p̂ψα)
2 =

µ
m~Ω
2

¶1/2
. (111)

Multiplying these quantities, we have

δxαδpα =
~
2
. (112)

Comparing this result with uncertainty relation in the Landau basis given
by Eq. (92) we see that only the ground state n = 0 minimizes the uncer-
tainties product for the coordinate and momentum, since the ground state
ϕ0(q) is exactly Gaussian in shape, i.e. it is the coherent wave function
according to the Schrödinger definition.

In as much as the coherent state ψα was presented above as a series of
the Landau states (see Eq. (96)) it is easy to write down the probability
distribution for the Landau quantum number n in the coherent state:

Wα(n) =| Cα(n) |2= e−|α|
2 | α |2n

n!
. (113)

Taking into account that | α |2= −nα, where −nα = (ψα, â
+âψα) stands

for the average of the quantity
qp√ n in the ψα-state, we see that Eq.

(113) is nothing but the Poisson probability distribution function
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Wα(n) = e−−nα
−nnα
n!

. (114)

5 The symmetric gauge in the Landau problem

Because the external magnetic field imposes an axial symmetry to the Lan-
dau problem, it is natural to solve the Schrödinger equation in the cylindrical
coordinates. The vector potential in the symmetric gauge is defined as fol-
lows A = 1

2 [Br]. The symmetric gauge is very popular, for example, in
the theory of interacting many-body systems in a magnetic field. Thus,
we shall use the cylindrical coordinates (ρ,φ,z), in the Schrödinger equation
for a charged particle of the mass me in a magnetic field described by the
symmetric gauge

− ~2

2me

·
1

ρ

∂

∂ρ

µ
ρ
∂

∂ρ

¶
+

∂2

∂z2
+
1

ρ2
∂2

∂φ2

¸
Ψ− i~Ω

2

∂Ψ

∂φ
+

m∗Ω2

8
ρ2Ψ = EΨ.

(115)
The magnetic field here is assumed to be parallel to the z-axis and we

omit for brevity terms relating to the free motion along the field direction.
The above Schrödinger equation can also be obtained in the cylindrical co-
ordinates if we choose the vector potential as

Aφ =
1

2
ρB , Aρ = Az = 0 , (116)

which is just another form of the symmetric gauge.
Because the coefficients in the differential Eq. (115) depend only on

the radial coordinate ρ, the momentum p̂z = ~k̂z and angular momentum
l̂z = i~∂/∂ϕ are the quantum integrals of motion so that the solution can
be factorized to separate the variables

Ψ = ΨφΨzR(ρ). (117)

Here Ψz is the plane wave along the z-axis (the eigenfunction of the
p̂z = ~k̂z)

Ψz = eikzz, (118)

and Ψφ is the eigenfunction of the operator l̂z

Ψφ = eimφ (119)
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with the eigenvalue ~ m where m is an integer. The radial part of the wave
function R(ρ) satisfies the equation

~2

2me

·
∂2R

∂ρ2
+
1

ρ

∂R

∂ρ

¸
+ f(ρ)R = 0 (120)

and the function f(ρ) is given by

f(ρ) ≡ − ~2

2me

m2

ρ2
+E − p2z

2me
− 1
8
meΩ

2ρ2 − ~Ω
2
m. (121)

We rewrite now the Eq. (120) in a dimensionless form

ρ̃2R00 +R0 +
µ
−1
4
ρ̃2 + η − m2

4ρ̃2

¶
R = 0, (122)

where a parameter η does not depend on the dimensionless coordinate ρ̃ =
ρ/LH

η =
1

~Ω

µ
E − p2z

2m∗

¶
− m

2
(123)

and derivatives are taken with respect to ρ̃. (LH stands for the magnetic
length).

To determine the radial part R(ρ) of the wave function it is instructive
first consider the limiting cases of large and small ρ̃. We see that if ρ̃→∞,
the wave function exponentially decreases as Ψ ∝ e−ρ̃2/2, while near the
origin (i.e., when ρ̃→ 0), the asymptotic behavior becomes power-like Ψ ∝
ρ̃|m|. This prompts us to write a solution for the R(ρ̃) in the form

R(ρ̃) = e−
ρ̃2

2 ρ̃|m|u(ρ̃) . (124)

By substituting Eq. (124) into Eq. (122), we find that u(ρ̃) can be
expressed in terms of the degenerate hypergeometric function F (α, η, z)
since it satisfies the following differential equation

zu00 + (η − z)u0 − αu = 0. (125)

The degenerate hypergeometric function is determined by the series in
variable z

F (α, η, z) =
∞X
k=0

(α)k
(η)k

zk

k!
,

where (α)k and (γ)k stand for the product of the form (α)k = α(α+1)...(α+
k). It has the following properties: (a) the series in z converges only for a
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finite value of z, (b) η should not take neither zero nor negative integer
values, and (c) α is an arbitrary value, (d) F (α, η, z) is polynomial when α
is a negative integer. In our case the function u(ρ̃) satisfies Eq. (125) so
that its solution is given by

u = F (α, η, z) (126)

with

α ≡
µ |m|+ 1−m

2
+
p2z/2me −E

~Ω

¶
, (127)

η ≡ |m|+ 1 , (128)

and z = ρ̃2. Combining these results and normalizing R by the conditionR∞
0 R2ρdρ = 1, we obtain the radial wave function in the form

Rnρ,m(ρ) =
1

L
|m|+1
H m!

s
(|m|+ nρ)!

2|m|nρ!
e
− ρ2

4L2
H ρ|m|F

µ
−nρ, |m|+ 1, ρ2

2L2H

¶
.

(129)
The energy spectrum is determined by the condition of the finiteness of

the wave function, which holds if α is a nonzero negative integer, say nρ.
This condition defines the energy levels as follows

E = ~Ω
µ
nρ +

|m|+m+ 1

2

¶
+
~2k2z
2me

. (130)

It is useful to introduce a new quantum number

n = nρ +
|m|+m

2
.

Then the energy spectrum acquire the standard form of the Landau
spectrum

En(kz) = ~Ω
µ
n+

1

2

¶
+
~2k2z
2me

.

Each level has an infinite degeneracy since for fixed integer n the orbital
number m takes values from −∞ to n. Putting nρ = 0, and assuming m to
be positive (which means that n = m) we note that the radial component of
the wave function can be rewritten as a function of the complex coordinate
z = x+ iy in the following form

Ψn(z) =

µ
1

πL2H2
n+1n!

¶1
2

(
z

LH
)
n
e
− |z|2
4L2

H . (131)
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In the quasiclassical limit (i.e., for large nÀ 1), the electron wave func-
tion localized mainly within a ring of the width LH and radius LH

√
2n. One

can see this after writing down the radial coordinate probability distribution
function

|Ψn|2 = C2
µ

ρ

LH

¶2n
e
− ρ2

2L2
H . (132)

Calculating then the expectation values of the radius and its square, with
the help of this function, we have

hρi = 2π

Z ∞

0
ρ |Ψn|2 ρdρ = LH

√
2
Γ
¡
n+ 3

2

¢
Γ
¡
n+ 1

2

¢ , (133)

hρ2i = 2π

Z ∞

0
ρ2 |Ψn|2 ρdρ = 2L2H(n+ 1) . (134)

The normalization constant C is given by the equation C2 = L2Hπ/2
n+1Γ(n+

1). For large nÀ 1, we obtain

hρi ' LH

√
2n , (135)p

hρ2i ' hρi À LH . (136)

On the other hand, the radial coordinate probability distribution func-
tion 2πρ |Ψn|2 has a narrow peak of the width LH centered at ρ20 = L2H(2n+
1). To see this we can do following elementary transformations:

2πρ |Ψn|2 = C

µ
ρ

LH

¶2n+1
exp(− ρ2

2L2H
) = C exp

·
−G( ρ

LH
)

¸
, (137)

where

G(
ρ

LH
) =

ρ2

2L2H
− (2n+ 1) ln( ρ

LH
).

This function has a minimum at ρ2L = L2H(2n + 1). Expanding then
G( ρ

LH
) in the power series near the ρ0, we have

2πρ |Ψn|2 ∝ exp[−(ρ− ρL)
2

L2H
].

The above relations mean that in quasiclassical limit a charged particle
moves most probably within the ring strap of the radius LH

√
2n and the

width LH << LH

√
2n as it is shown in the Fig. 8.

The energy levels of a charged particle in a uniform magnetic field can
be obtained by using the semi-classical approximation. According to the
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Figure 8: In a quasiclassical limit a charged particle moves most probably
within the ring strap of the radius LH

√
2n and the width LH << LH

√
2n.

Eq. (120) we can write down f (ρ) = E− p2z
2me
−Veff (ρ), where the effective

potential for the Schrödinger equation in our problem takes the form

Veff (ρ) =
~2

2meρ2

µ
m+

eB

2~c
ρ2
¶2

. (138)

The elementary analysis then shows that the classically accessible region
of the radial motion of a particle in a magnetic field is given by

ρ1,2 =

r
2~c
eB

"r
n+m+

1

2
±
r
n+

1

2

#
. (139)

In the extreme quantum limit (i.e., n = 0), the wave function is given by

|Ψn=0,m|2 = C2
µ

ρ

LH

¶2|m|
e
− ρ2

2L2
H . (140)

Since the shape of this wave function coincides with that of Eq. (132)
we conclude that the particle motion for mÀ 1 looks like a ring of LH

√
m

and width LH .
The electrical current related to the Landau orbitals can be easily cal-

culated on the basis of the standard equation

j =
ie~
2me

(Ψ∇Ψ∗ −Ψ∗∇Ψ)− e2

mec
AΨΨ∗. (141)

It is clear that radial component of the current is equal zero in view
of the particle localization within the plane perpendicular to the magnetic
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field B, i.e. jρ = 0. Computing the current in the other two directions of
the cylinder coordinate system in the symmetric gauge, we have

jϕ =

µ
e~m
meρ

− e2B

2mec
ρ

¶
|Ψnmkz |2 , (142)

jz =
epz
me

|Ψnmkz |2 . (143)

In the following subsections, we discuss another examples where the
symmetric gauge is convenient to apply for solving the Schrödinger equation.

6 Coherent state in the symmetric gauge

In this section we shall generalize the coherent state introduced previously
in the Landau gauge to the case of the symmetric gauge. To do this it
is necessary again to obtain a solution of the Schrödinger equation in the
symmetric gauge, but this time in the operator form which generalizes the
approach of the section 2.5.

The Hamiltonian of a charged particle in the symmetric gauge

A =
1

2
(−By,Bx, 0) (144)

takes the form

Ĥt =
1

2m

"µ
P̂x − mΩy

2

¶2
+

µ
P̂y +

mΩx

2

¶2#
= (145)

=
1

2m

h
P̂x

2 + P̂y
2
i
+

mΩ2

2

¡
x2 + y2

¢
+mΩL̂z,

where

L̂z = xP̂y − P̂xy (146)

is the z-component of the angular momentum. (We do not consider a free
motion along the field B which is trivial, so that Ĥt stands for the transverse
part of the Hamiltonian.) Proceeding in the same fashion as in the section
2.5, we can introduce a couple of operators

âx =
1√
2

µ
qx +

d

dqx

¶
, ây =

1√
2

µ
qy +

d

dqy

¶
(147)
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with qx = x/LH and qy = y/LH .
In terms of these operators the Hamiltonian (145) takes the form

Ĥt = ~Ω
©
â+x âx + â+y ây + 1− i

¡
âyâ

+
x − â+y âx

¢ª
. (148)

This quadratic form can be diagonalized with the help of the unitary
transformation

â1 =
1√
2
(âx + iây) , â2 =

1√
2
(âx − iây) , (149)

which implies that both left and right hand side operators commute accord-
ing to the Bose-like relationsh

âi, â
+
j

i
= δij , [âi, âj ] =

h
â+i , â

+
j

i
= 0, (i, j = 1, 2, x, y) . (150)

After the diagonalization, the operators Ĥt and L̂z become

Ĥt = 2~Ω
½
â+1 â1 +

1

2

¾
, (151)

L̂z = ~
¡
â+1 â1 − â+2 â2

¢
. (152)

These operators are linear combinations of the operator n̂i = â+i âi.
On the other hand, from the commutation relations [Ĥt, L̂z] = [Ĥt, n̂i] =
[L̂z, n̂j ] = 0 it follows immediately that the eigenfunctions of the n̂j are
at the same time the eigenfunctions for the operators Ĥt and L̂z with the
corresponding eigenvalues

En1 = 2~Ω
µ
n1 +

1

2

¶
, (153)

Lz = ~ (n1 − n2) . (154)

We see therefore, that the wave function of a charged particle Ψn1n2 is
determined by a couple of quantum numbers n1 and n2. It may be obtained
from the ground state Ψ00 in the same manner as we have done it in the
section 2.5 for the case of the coherent state in the Landau gauge. The
equations for the ground state generalizing the corresponding definition of
the section 2.5 given by Eq. (74) yield â1ψ00 = 0, â2ψ00 = 0.

In the coordinate representation these equations read

L2H

µ
∂

∂x
+ i

∂

∂y

¶
+
1

2
(x+ iy)Ψ00(x, y) = 0, (155)
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−
·
L2H

µ
∂

∂x
− i

∂

∂y

¶¸
+
1

2
(x− iy)Ψ00(x, y) = 0. (156)

Solving Eqs.(155), (156) and normalizing the solution, we found

Ψ00(x, y) =

µ
mΩ

π~

¶1/2
exp

·
−
µ

1

2L2H

¶¡
x2 + y2

¢¸
. (157)

In full analogy with the equation (76) the wave function belonging to
the energy EN = 2~Ω(N + 1/2) is given by

ΨNn =

¡
â+1
¢N

√
N !

¡
â+2
¢n

√
n!
Ψ00. (158)

This wave function is degenerated with respect to the quantum number
n which is an arbitrary integer determining the Lz = ~(n−N). Introducing
a complex coordinate ρ = x + iy one can rewrite Eq. (158) in an explicit
form

ΨNn (ρ, ρ
∗) =

µ
2n−NmΩ
π~N !n!

¶1/2µ
ρ∗ − ∂

∂ρ

¶N

ρne−|ρ|
2
. (159)

We determine then the coherent state Ψαζ as the eigenstate for the op-
erators â1 and â2

â1Ψαζ =
α

LH
Ψαζ , (160)

â2Ψαζ =
ζ

LH
Ψαζ . (161)

In the coordinate representation these equations take form of the differ-
ential equations µ

∂

∂ρ∗
+

1

4L2H
ρ

¶
Ψαζ =

α

2L2H
Ψαζ , (162)

µ
∂

∂ρ
+

1

4L2H
ρ∗
¶
Ψαζ =

ζ

2L2H
Ψαζ . (163)

The normalized solution of Eqs.(162) and (163), as one can check by the
direct substitution, is
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Ψαζ =
1

LH

√
2π
exp

·
− 1

4L2H

¡| α |2 + | ζ |2¢− 1

4L2H
(ρ− 2ς) (ρ∗ − 2α) + αζ

2L2H

¸
.

(164)
We see that Ψαζ is the Gauss-like wave function which means that Ψαζ

minimize the uncertainty principle for the coordinate and momentum

δxαζδpαζ =
~
2
. (165)

and, hence, is the coherent wave function in the sense of the Schrödinger
definition.

7 Electron in the field of a thin solenoid. The
Aharonov-Bohm effect

Consider an electron moving in the magnetic field of an infinitesimally thin
and infinitely long solenoid whose magnetic field is oriented along the z-
axis of the Cartesian coordinates. Let the flux through this solenoid be Φ,
so that the magnetic field of the solenoid depends only on the coordinate
r = xi+ yj within the plane perpendicular to the magnetic field

B (r) = Φδ (r) . (166)

Since the Schrödinger equation depends on the vector potential A (r),
we have to find A (r) such that

rotA (r) = Φδ (r) . (167)

Equation (167) implies thatI
A (r) dl =

I I
rotA (r) dS = Φ (168)

for any contour around the singular point r = 0.
It is easy to see that

A (r) =
Φ

2π

k× r
r2

=
Φ

2π

−yi+ xj

x2 + y2
. (169)

satisfies the required conditions. (i, j,k are the unit vectors along theX−, Y−
and Z− axes correspondingly).

We can introduce an angle θ (r) between the r and X-axis by
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θ (r) = arctan
³y
x

´
. (170)

In terms of θ (r) the vector potential (169) reads

A (r) =
Φ

2π

∂θ (r)

∂r
. (171)

The Schrödinger equation for an electron in the field of the solenoid is
given by

1

2m

µ
~
i

∂

∂r
− e

c
A (r)

¶2
Ψ (r) = EΨ (r) (172)

with the vector potential determined by Eqs.(169) and (171).
In view of the axial symmetry of the problem the wave function should

be periodic under rotations on the angle θ = 2π around the z-axis.
Consider a phase transformation of the wave function

Ψ0 (r) = e
−i Φ

Φ0
θ(r)
Ψ (r) , (173)

where Φ0 = 2π~c
e is the flux quantum. Since |Ψ0 (r)|2 = |Ψ (r)|2 both Ψ0 (r)

and Ψ (r) belong to the same quantum state. On the other hand, the primed
wave function satisfies the Schrödinger equation without vector potential

− ~
2me

∂2

∂r2
Ψ0 (r) = EΨ0 (r) (174)

because of the relation

µ
~
i

∂

∂r
− e

c
A (r)

¶
e
i Φ
Φ0

θ(r)
Ψ0 (r) = e

i Φ
Φ0

θ(r)
µ
~
i

∂

∂r
− e

c
A0 (r)

¶
Ψ0 (r) (175)

in which

A0 (r) = A (r)− Φ
2π

∂θ (r)

∂r
= 0 (176)

in view of Eq. (171).
We must supply Eq. (174) with the boundary conditions under rotation

which are rather unusual and depending on the flux Φ. Indeed, since Ψ (r)
is the 2π-periodic, we have from Eq. (173)

Ψ0 (θ + 2π) = e
−i2π Φ

Φ0Ψ0 (θ) . (177)
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In the polar coordinates r and θ Eq. (174) reads

− ~
2

2m

½
1

r

∂

∂r

µ
r
∂

∂r
+
1

r2
∂2

∂θ2

¶¾
Ψ0 (r, θ) = EΨ0 (r, θ) (178)

and one can separate variables in Ψ (r) ≡ Ψ (r, θ)

Ψ (r, θ) = f (r)um (θ) , (179)

where um (θ) is the eigenfunction of the operator L̂z =
~
i
∂
∂θ because of the

axial symmetry of the problem in question

um (θ) =
1√
2π

eimθ. (180)

Note first that in the polar coordinates x = r cos θ, y = r sin θ and the
angle θ in Eq. (170), in fact, does not depend on coordinates.

Thus, the primed wavefunction becomes

Ψ0 (r, θ) = f (r)
e
i m− Φ

Φ0
θ

√
2π

, (181)

where m is an integer (the Lz quantum number).
We see therefore that one can interpret the angular dependence of the

wavefunction (181) in terms of the angular momentum projection on the
solenoid axis, i.e.

1√
2π

ei
Lzθ
~ =

1√
2π

e
i m− Φ

Φ0
θ
. (182)

This implies that the angular momentum is now depends on the flux
through the solenoid:

Lz = ~
µ
m− Φ

Φ0

¶
. (183)

Substituting then Ψ0 (r, θ) (181) into Eq. (178) we arrive at the equation
for the radial wavefunction f (r):

d2f

dr2
+
1

r

df

dr
+

³
m− Φ

Φ0

´2
r2

f − 2meE

~2
f = 0. (184)

This is the Bessel equation and its regular at r = 0 solution is given by
the Bessel function Jν :
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fν (r) = CJν (kr) , (185)

where

k =

r
2meE

~2
and ν =

¯̄̄̄
m− Φ

Φ0

¯̄̄̄
. (186)

In case when there is an unpenetrable cylinder at r = R, we have
fν (R) = 0 and correspondingly

Jν (kR) = 0, (187)

which means that kR is one of the roots of the Bessel function κ (n, ν)

knν =
κ (n, ν)

R
, (188)

so that the energy spectrum is a discrete and determined by equations (186)
and (188)

E (n, ν) =
~2

2mR2
κ2 (n, ν) . (189)

We see that angular momentum Lz (183) and the energy spectrum (189)
depend on the magnetic field Φ/Φ0 though electron moves in the region
r > 0, where magnetic field equals zero. This paradoxical phenomenon
which has no analog in classical electrodynamics was predicted in 1959 by
Ahronov and Bohm. In classical mechanics the Lorentz force acts locally
and therefore has no impact on a charged particle in the region where B = 0
even though the vector potential is nonzero. After its theoretical prediction
in 1959 the Ahronov-Bohm effect have been found then experimentally and
has numerous manifestations in the modern physics.

8 The density matrix of a charged particle in quan-
tizing magnetic field

So far we have considered the Landau problem within the Schrödinger equa-
tion approach which implies that the charged particle is isolated from the
environment and only under this assumption a description in terms of the
wave function is relevant. In reality electrons in the solids are involved in
different interactions and move under the action of the atomic forces from
the crystal lattice. Another words they correlate somehow with the rest
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of the sample. This correlation means that the true quantum mechanical
description should be based not on the wave function ψ but rather must be
done in terms of the density matrix ρ̂. The density matrix approach is an
alternative to the Schrödinger equation description in case when a system is
in contact with the environment. In this section we will give a description of
the Landau problem in terms of the density matrix in the most simple case
which assumes a contact between the charged particle and the thermostat
(environment) being at the temperature T.

8.1 The density matrix in the Landau problem

The Landau energy spectrum and the wave functions have been calculated in
detail in section 2.4. According to the results of this section we can write the
density matrix ρ̂ (r, r0, β) in the Landau basis (taken in the Landau gauge)
as follows:

ρ̂
¡
r, r0, β

¢
=

1

2π~

Z ∞

−∞
dpyρ⊥(q, q

0, β)e−i
py
~ (y−y0)ρk(z − z0, β). (190)

Here the quantity ρk(z−z0, β) stands for the longitudinal density matrix
for a free particle moving parallel to the magnetic field

ρk(z − z0, β) =
1

2π~

Z ∞

−∞
dpze

−β p2z
2m
−i pz~ (z−z0) (191)

and the function ρ⊥(q, q0, β) is the density matrix of the Larmor oscillator
centered at the coordinate x0(py) = −cpy/eB in the plane perpendicular to
the applied magnetic field:

ρ⊥(q, q
0, β) =

∞X
n=0

e−β~Ω(n+
1
2)ϕn(q)ϕn(q

0). (192)

The Landau basis ϕn(q) is given by the Eq. (81), and dimensionless
coordinates q and q0 are connected with the x−axes coordinates by the
relations

LHq = x− x0(py), LHq
0 = x0 − x0(py). (193)

Completing integration in the Eq. (191) we obtain

ρk(z − z0, β) =
r

m

2πβ~2
e
− m
2β~2

(z−z0)2
. (194)
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This quantity, normalized by the condition ρk(z − z0, 0) = δ(z − z0), is
exactly the statistical operator for a free particle in a one dimensional space.

To calculate the ρ⊥(q, q0, β) is a more tricky business. With this purpose
in mind, we first derive the differential equation for this quantity. To do
this, note that from the definition of the operators â and â+ by Eq. (70)
and Eqs.(84), (85) it follows that

qϕn(q) =
1√
2

¡√
nϕn−1(q) +

√
n+ 1ϕn+1(q)

¢
, (195)

∂

∂q
ϕn(q) =

1√
2

¡√
nϕn−1(q)−

√
n+ 1ϕn+1(q)

¢
. (196)

Using these equations as well as Eq. (192), we have

∂

∂q
ρ⊥(q, q

0, β) = e−β~Ωf(q, q0)− f(q0, q), (197)

where the following function was introduced

f(q0, q) =
1√
2

∞X
n=0

e−β~Ω(n+1/2)
√
n+ 1ϕn(q

0)ϕn+1(q). (198)

With the help of Eqs.(195) and (192) we find a useful relations between
the function f(q0, q) and the perpendicular component of the statistical op-
erator:

qρ⊥(q, q
0, β) = e−β~Ωf(q, q0) + f(q0, q), (199)

q0ρ⊥(q, q
0, β) = e−β~Ωf(q0, q) + f(q, q0). (200)

Combining Eqs.(197)-(200) we arrive at the differential equation for the
density matrix ρ⊥, which reads

∂

∂q
ρ⊥(q, q

0, β) =
µ
− q

tanhβ~Ω
+

q0

sinhβ~Ω

¶
ρ⊥(q, q

0, β). (201)

The solution of this simple equation is trivial an yields

ρ⊥(q, q
0, β) = C(q0, β) exp

·
−
µ

q2

2 tanhβ~Ω
− qq0

sinhβ~Ω

¶¸
. (202)
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According to the definition (192) the quantity ρ⊥(q, q0, β) is symmetric
with respect to the substitution q → q0. This condition tells us that the
constant C(q0, β) should be taken in the form

C(q0, β) = C0(β) exp

·
−
µ

q02

2 tanhβ~Ω

¶¸
. (203)

It follows also from the Eq. (65) that the function ρ⊥(q, q0, 0) should be
normalized by the condition

ρ⊥(q, q
0, 0) = δ

¡
q − q0

¢
. (204)

Choosing then the constant C0(β) to satisfy the equation (4.28), we have

ρ⊥(q, q
0, β) = (2π sinhβ~Ω)−1/2 exp

·
− (q2 + q02)
2 tanhβ~Ω

+
qq0

sinhβ~Ω

¸
. (205)

Substituting the Eq. (205) into the Eq. (190), we find

ρ̂
¡
r, r0, β

¢
= ρ⊥(x, x

0, y, y0, β)ρk(z − z0, β), (206)

where the perpendicular component of the density matrix
ρ⊥(x, x0, y, y0, β) = ρ⊥(x, x0, y − y0, β) is determined by the integral

ρ⊥(x, x
0, y, y0, β) =

1

2π~

Z ∞

−∞
dpyρ⊥(q, q

0)e−i
py
~ (y−y0) (207)

and the dependence on the momentum py enters the function ρ⊥(q, q0)
through the dimensionless coordinates

q(py) = [x− x0(py)]/LH , q0(py) = [x0 − x0(py)]/LH . (208)

We can single out of the Eq. (207) ρosc(x, x
0, β) the statistical operator

of the quantum oscillator of the frequency Ω so that ρ⊥(x, x0, y, y0, β) can be
written as a product

ρ⊥(x, x
0, y, y0, β) = ρosc(x, x

0, β)G(x, x0, y, y0, β), (209)

where ρosc(x, x
0, β) is given by the formula

ρosc(x, x
0, β) =

µ
mΩ

2π~ sinhβ~Ω

¶1/2
exp

·
−
µ
mΩ

2~

¶µ
x2 + x02

tanhβ~Ω
− 2xx0

sinhβ~Ω

¶¸
.

(210)

44



The G function is given by the Gauss integral

G(x, x0, y, y0, β) =
1

2π

Z ∞

−∞
dkye

−Ak2y+Bky =
1

2π

r
π

A
e
B2

4A (211)

with

A = L2H tanh

µ
β~Ω
2

¶
, B(x, x0, y, y0, β) = tanh

µ
β~Ω
2

¶
(x+ x0) + i(y − y0).

(212)
Combining all these equations , we finally have

ρ̂
¡
r, r0, β

¢
=

ρk(z − z0, β)

4πL2H sinh
³
β~Ω
2

´e−S(x,x0,y,y0,β), (213)

where

S(x, x0, y, y0, β) = (214)

=
1

4L2H

½
coth

µ
β~Ω
2

¶£
(x− x0)2 + (y − y0)2

¤
+ 2i(x+ x0)(y − y0)

¾
.

The partition function of the problem in question is given by

Q (β) =

Z Lx

0
dx

Z Ly

0
dy

Z Lz

0
dzρ̂ (r, r, β) . (215)

Taking into account that S(x, x, y, y, β) ≡ 0 we see that ρ̂(r, r, β) does
not depend on the coordinate r

ρ̂(r, r, β) =
ρk(0, β)

4πL2H sinh
³
β~Ω
2

´ . (216)

Then, after the trivial integration in the Eq. (215) we obtain an explicit
formula for the partition function Q (β):

Q(β) =
Φ

Φ0

1

2 sinh
³
β~Ω
2

´Lz

r
m

2π~2β
. (217)

The origin of each factor in the equation (217) is absolutely clear: g =
LxLy/2πL

2
H = Φ/Φ0 is the degeneracy of the Landau level on the Lar-

mor orbit center position,
h
2 sinh

³
β~Ω
2

´i−1
is the partition function of
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the quantum oscillator of the cyclotron frequency Ω, and the last factor
Lz(m/2π~2β)1/2 is the partition function of a free particle in one dimension
associated with its motion along the z axis (i.e. along the magnetic field).

The free energy F = −(1/β) lnQ(β) is given by

F =
~Ω
2
+ T ln

³
1− e−

~Ω
T

´
− T ln

Ã
Φ

Φ0
Lz

r
mT

2π~2

!
. (218)

The sum of the first two terms in the Eq. (218) is exactly the free energy
of the oscillator with the frequency Ω, whereas the last term is due to the
degeneracy of the Landau orbits and because of the free motion of a particle
along the magnetic field.

9 The Green’s function of a particle in external
magnetic field

The results of the previous section, as we will show, may be used for the
calculations of the Green’s function of the Landau problem because of the
formal similarity of the equation of motion in both cases. We start from the
equation of motion for the Green’s function which in a general form reads
as follows µ

i~
∂

∂t
− Ĥ(r)

¶
G
¡
r, t, r0, t0

¢
= i~δ(r− r0)δ(t− t0), (219)

where Ĥ(r) is the Hamiltonian of the system.
If the eigenvalue equation is solved

Ĥ(r)Ψn(r) = EnΨn(r) (220)

so that the energy spectrum En and the wave functions Ψn(r) are found
explicitly, then it is straightforward to check that the Green’s function can
be calculated as a sum over the quantum spectrum:

G
¡
r, t, r0, t0

¢
= Θ(t− t0)

X
n

e−
i
~ En(t−t0)Ψn(r)Ψ

∗
n(r

0), (221)

where

Θ (τ) =

½
1, ifτ ≥ 0
0, ifτ < 0

is the Heavyside step-function.
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Putting t0 = 0 in Eq. (221) and compare it with equation, describing the
coordinate representation for the statistical operator ρ̂ (r, r0, β) , we found a
simple relation between the Green’s function and the density matrix:

G
¡
r, t, r0, 0

¢
= ρ̂

¡
r, r0, β

¢ |β= it
~
. (222)

Since we have calculated above the density matrix for the Landau prob-
lem, the Green’s function for a charged particle in the magnetic field follows
immediately from Eqs.(213) and (194)

G
¡
r, t, r0, 0

¢
= Gk

¡
z − z0, t

¢
G⊥

¡
ρ, t,ρ0, 0

¢
. (223)

Here Gk is the Green’s function of a free particle moving along the z-axis
(i.e. along the magnetic field B) Gk (z − z0, t) = ρk (z − z0, β) |β= it

~
,

Gk
¡
z − z0, t

¢
=
³ m

2πi~t

´1/2
exp

·
im

2~t
(z − z0)2

¸
(224)

and G⊥ stands for the Green’s function of a charged particle moving within
the plane perpendicular quantizing magnetic field

G⊥
¡
ρ,ρ0, t

¢
=

1

4πiL2H sin
¡
Ωt
2

¢eiS̃(x,x0,y,y0,t), (225)

where

S̃ =
1

4L2H

½
cot

µ
Ωt

2

¶h¡
x− x0

¢2
+
¡
y − y0

¢2i
+ 2

¡
x+ x0

¢2 ¡
y − y0

¢2¾
.

(226)
The above equations for the Green’s function G (r, t, r0, 0) have been

obtained in the Landau gauge A = (0, By, 0) . A natural question arises in
this connection how the gauge transformations may influence the shape of
the Green’s function determined by Eq. (221). To answer this question let
us rewrite the Hamiltonian in the eigenvalue equation (220) in the following
form

Ĥ =
1

2m
(DA)

2 , (227)

where

DA = (
~
i
∇−e

c
A). (228)
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Consider now the gauge ϕ (r)transformations given by two simultaneous
relations: A0 = A +∇f(r) and Ψ0n(r) = Ψn(r)e

iϕ(r). If the phase ϕ (r)
in these transformations satisfies the condition ~∇ϕ (r) = ∇f(r)e/c it is
straightforward to see that a following equation holds

DA0Ψ0n(r) = eiϕ(r)DAΨn(r). (229)

The latter means that changes in the vector potential due to the gradient
term ∇f(r) may be compensated by the gauge transformation Ψ0n(r) =
Ψn(r)e

iϕ(r) with ϕ (r) = 2π
Φ0
f(r)+C and the theory became gauge invariant

under these transformations. Since the function Ψ0n(r) is the eigenfunction
of the Schrödinger equation (220) belonging to the same eigenvalue En,
as the wave function Ψn(r), the Green’s function (221) under the gauge
transformation A0 = A+∇f(r) acquire an additional factor g:

g = exp

·
2π

Φ0
i
¡
f(r)− f(r0)

¢¸
. (230)

In particular case of the symmetric gauge A = 1
2 [Br] the function f(r)

should be tacking in the form f = 1
2Bxy, so that the gauge factor is given

by

g = exp

·
πB

Φ0
i
¡
xy − x0y0

¢¸
. (231)

10 The supersymmetry of the Landau problem

The supersymmetry of a system as the invariance of its Hamiltonian un-
der the transformations of bosons into fermions and vice versa has been
considered first in the quantum field theory. This notion appeared to be ex-
tremely creative both from physical and mathematical points of view. For
the first time a matter (fermions) and carriers of interactions (bosons) have
been involved into a theory on the equal footing. It was novel also that
commuting and anticommuting variables have been incorporated into a new
type of mathematics - the superalgebra. The basic property of the super-
symmetry is that it unities in a nontrivial way the continuous and discrete
transformations. Except the quantum field theory the ideas and methods
of the supersymmetry have been spread wide over the different branches of
physics: the statistical physics, the nuclear physics, the quantum mechanics
and so on.
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In this section we will show that incorporation of the discrete spin vari-
able into the Landau problem makes the latter belonging to the so called
supersymmetric quantum mechanics. Because the supersymmetric quantum
mechanics so far is not a common textbook knowledge, we have to consider
first some fundamentals of the supersymmetry in the nonrelativistic quan-
tum mechanics. After that we will go ahead with the consideration of the
supersymmetry in the Landau problem.

The simplest way to introduce operators transforming bosons into fermi-
ons and vice versa is as follows

Q̂+ | NB, NF i ∝| NB − 1, NF + 1i, (232)

Q̂− | NB, NF i ∝| NB + 1, NF − 1i, (233)

| NB, NF i is the state vector with fixed number of bosons NB and fermions
NF . The integers NB and NF can take the following values: NB = 0, 1, 2...,
but NF takes only two values NF = 0, 1.

The operator Q̂+ transforms bosons into fermions (i.e. annihilates the
boson and creates the fermion) and Q̂− contrary destroys one fermion and
creates one boson. These operators may be presented in an evident form
with the help of the creation and annihilation operators

Q̂+ = qb̂f̂+, Q̂− = qb̂+f̂ , (234)

where b̂ and f̂ satisfy standard for bosons and fermions commutation rules:

h
b̂, b̂+

i
= 1,

n
f̂ , f̂+

o
≡ f̂ f̂+ + f̂+f̂ = 1, f̂2 = f̂+2 = 0,

h
b̂, f̂
i
= 0.

(235)
The nilpotentcy of the fermion operators (i.e. the property f̂2 = f̂+2 =

0) makes the operators Q̂± nilpotent too

Q̂2+ = Q̂2− = 0. (236)

This property is closely related with the anticommutation. Let us intro-
duce two Hermitian operators Q̂1and Q̂2 by the relations

Q̂1 = Q̂+ + Q̂−, Q̂2 = −i
³
Q̂+ − Q̂−

´
. (237)

It is easy to check that these operators are anticommuting
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n
Q̂1, Q̂2

o
= 0 (238)

and their squares satisfy the following equations:

Q̂21 = Q̂22 =
n
Q̂+, Q̂−

o
. (239)

These equations prompt us the simplest form for the Hamiltonian Ĥ,
possessing the supersymmetry, i.e. the one which is invariant under the
transformations given by Eq. (232) and (233) and mixing bosons with fermi-
ons:

Ĥ = Q̂21 = Q̂22 =
n
Q̂+, Q̂−

o
. (240)

The supersymmetry of the Hamiltonian (240) means that it does com-
mute with any operator Q̂α (where α = ± or 1, 2), so that for any Q̂α

holds h
Ĥ, Q̂α

i
= 0. (241)

Two important properties concerning the energy spectrum follows imme-
diately from the definition of the supersymmetric Hamiltonian of Eq. (240).
First, the energy spectrum given by the eigen equation

ĤΨ = EΨ (242)

is nonnegative E ≥ 0 since Ĥ is determined as the square of the Hermitian
operator. Second, the energy levels with nonzero energies E 6= 0 are de-
generated twice. These statements may be proved as follows. Owing to the
commutation relation of Eq. (241), the Hamiltonian Ĥ and the operators
Q̂1 or Q̂2 should have a common set of eigenvectors. From the above equa-
tions and definitions it is straightforward to see that the eigenvector of the
operator Q̂1is at the same time the eigenvector of the Hamiltonian Ĥ:

Q̂1Ψ1 = qΨ1, ĤΨ1 = EΨ1 = q2Ψ1. (243)

Let us define the vector Ψ2 by the relation

Ψ2 = Q̂2Ψ1. (244)

It follows then that Ψ2 is the eigenvector of Q̂1 with the eigenvalue −q:

Q̂1Ψ2 = Q̂1Q̂2Ψ1 = −Q̂2Q̂1Ψ1 = −qΨ2. (245)
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On the other hand, since
h
Ĥ, Q̂2

i
= 0, we obtain

ĤΨ2 = ĤQ̂2Ψ1 = Q̂2ĤΨ1 = q2Ψ2. (246)

Thus, if q 6= 0 then both Ψ1 and Ψ2 belong to the eigenvalue E = q2

which means a double degeneracy, whereas the energy level E = 0 (q =
0) is nondegenerated. This properties are the direct consequence of the
supersymmetry of the Hamiltonian (240).

It is instructive for further consideration to express Ĥ in terms of the
operators b̂ and f̂ . Using Eqs.(240) and (234) we have

Ĥ =
n
Q̂+, Q̂−

o
= ĤB + ĤF . (247)

Therefore, we see that Ĥ is a sum of two Hamiltonians quadric in oper-
ators, which we will call the bosonic and fermionic oscillators:

ĤB = q2
µ
b̂+b̂+

1

2

¶
, EB = q2

µ
NB +

1

2

¶
, NB = 0, 1, 2..., (248)

ĤF = q2
µ
f̂+f̂ − 1

2

¶
, EF = q2

µ
NF − 1

2

¶
, NF = 0, 1. (249)

The frequencies of these two oscillators are the same ω = q2 which makes
the Hamiltonian of Eq. (240) supersymmetric.

The eigenvalues of the Hamiltonian Ĥ are positive and given by the sum

ENBNF
= EB +EF = ω (NB +NF ) . (250)

The ground state (the vacuum) of the Hamiltonian Ĥ corresponds to the
quantum numbers NB = NF = 0, so that the positive energy of the boson
oscillator ground state, E0B = ω/2, is exactly compensated by the negative
fermion vacuum energy E0F = −ω/2. This is the simplest manifestation
of the famous cancellation of the vacuum zero oscillations energy in the
supersymmetric theories.

In the quantum field theory, owing to the infinite degrees of freedom, the
energies of fermionic and bosonic vacua are infinite and have opposite signs.
Thus, the problems with the infinite vacuum energies in nonsupersymmetric
theories are no more than an artifact arising because of the inappropriate
division of the zero vacuum energy of the ”unified theory” including bosons
and fermions into two (infinite) parts: positive bosonic and negative fermi-
onic. We see that in the supersymmetric theory the fermionic and bosonic
vacuum energies simply cancel each other.
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The Q̂± operators may be generalized in a way preserving the supersym-
metric form of the Hamiltonian given by the Eq. (240). For example, if we
take them in the form

Q̂+ = B̂
³
b̂, b̂+

´
f̂+, (251)

Q̂− = B̂+
³
b̂, b̂+

´
f̂ , (252)

then it is straightforward to check that the key relation
h
Ĥ, Q̂±

i
= 0 holds

for an arbitrary function B̂
³
b̂, b̂
´
of the bosonic operators b̂ and b̂+, because

of the nilpotentcy of the operators (251) and (252). On the other hand, the
supersymmetric Hamiltonian (247) after substitution of the operators (251)
and (252) describes a system of bosons interacting with themselves and
fermions, in contrast to the noninteracting fermionic and bosonic oscillators
in case when operators Q̂± are determined by the Eq. (234).

In as much as the fermion filling number NF may take only two values
NF = 0, 1 it is convenient to use a two-component wave vector in the form

Ψ =

µ
Ψ1
Ψ0

¶
(253)

with Ψ1 corresponding to NF = 1, and Ψ0 to NF = 0. The Fermi operators
f̂ and f̂+ in this representation are given by the 2× 2 matrix

f̂+ = σ̂+ =

µ
0 1
0 0

¶
, f̂ = σ̂− =

µ
0 0
1 0

¶
, (254)

where σ̂± = 1/2(σ̂1 ± iσ̂2) and symbol σ̂j(j = 1, 2, 3) stands for the Pauli
matrices.

The Hamiltonian Ĥ in the matrix representation takes the form

Ĥ =
n
Q̂+, Q̂−

o
=
1

2

n
B̂, B̂+

o
+
1

2

h
B̂, B̂+

i
σ̂3. (255)

We see that fermionic degree of the freedom (given by the term contain-

ing σ̂3) vanishes if the commutator
h
B̂, B̂+

i
= 0.

Taking then B̂ in the form

B̂ =
1√
2

h
iP̂ +W (x)

i
, P̂ =

~
i

d

dx
(256)

where W (x) is an arbitrary function of the coordinate, we have
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Ĥ =
1

2

·
P̂ 2 +W 2(x) + σ̂3 + ~

dW (x)

dx

¸
. (257)

This differential operator is known as the Hamiltonian of the super-
symmetric quantum mechanics of Witten. It takes the form of the Pauli
Hamiltonian

Ĥ =
P̂ 2

2
+ U(x) + σ̂3µ0B(x), (258)

if we adopt the potential energy to be U(x) = W 2(x)/2 and associate the
Zeeman splitting ±µ0B(x) with the last term in the Eq. (258) i.e. choose
the ”magnetic field ” according to the relation ~dW (x)/dx = µ0B(x). Of
course, it is not true magnetic field since there are no real magnetic field in
one dimension.

In the three dimensional case the Pauli Hamiltonian reads

Ĥ =
1

2m

³
p− e

c
A
´2
+ U − µ0Bŝ, ŝ =

~
2
σ̂3. (259)

The eigenfunctions of this Hamiltonian can be written as a product of
the coordinate and spin functions

Ψn,Pz ,ν,sz = ΨnPzν(r)χ (sz) . (260)

The index ν here depends on the momentum Py which determines the
Larmore orbit position in the Landau gauge (A = (0, Bx, 0)), or on the
integer m in the case of symmetric gauge (A = 1/2(−By,Bx, 0)).

The energy spectrum for U ≡ 0 is given by the equations

EnPz(sz) = En(sz) +
P 2z
2m

, (261)

En(sz) = ~Ω
µ
n+

1

2

¶
− 2µ0Bsz. (262)

We see that the transverse energy (262) possesses the properties of the
supersymmetric quantum mechanics. It becomes clear if we rewrite Eq.
(262) in the form

En(sz) ≡ EN = ~ΩN, (263)

where N = n+ sz + 1/2 is a sum of the two quantum numbers.
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The ground state, N = 0, (n = 0, sz = −1/2) has zero energy E0 = 0
and this energy level is not degenerated. Contrary, the levels with N 6= 0
are degenerated twice since two states with different quantum numbers n =
N, sz = −1/2 and n = N−1, sz = 1/2 belong to the same energy level. This
is exactly what we should have in the supersymmetric quantum mechanics.

(We do not consider here the degeneracy on the orbit centre position). In
essence, the supersymmetry of the energy spectrum En(sz) stems from the
fact that the Bohr magneton equals to µ0 = e~/2mc so that the energy µ0B
is exactly one half of the cyclotron energy ~Ω. Because of that, the transverse
part of the Hamiltonian (259) can be written in the supersymmetric form

Ĥ⊥ =
1

2m

³
p̂⊥ − e

c
A⊥

´2 − µ0Hŝ = ~Ω
µ
b̂+b̂+

1

2

¶
+ ~Ω

µ
f̂+f̂ − 1

2

¶
,

(264)
where the Fermi operators f̂+ and f̂ are taken in the form (254) while the
Bose operators b̂+ and b̂ are given by

b̂ = (π̂y + iπ̂x) (2m~)−1/2 ,
h
b̂, b̂+

i
= 1 (265)

with π̂ =
¡
p̂⊥ − e

cA⊥
¢
.

The orbital moment corresponds here the bosonic degree of freedom with
the quantum numbers NB = n(0, 1, 2...) whereas the spin variable plays the
role of the fermionic degree of freedom with NF = sz + 1/2. The energy
spectrum of the Hamiltonian (264) is equal to

E(NB, NF ) = ~Ω(NB +NF ). (266)

The above consideration shows that the supersymmetry of the electron mov-
ing in an external magnetic field is not an abstract mathematical construc-
tion, since it has a practical realization in the Landau problem.
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