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Abstract

We review here some aspects of modern thermodynamics of differ-
ent two-dimensional electron systems (2DES) on Landau levels (i.e. in
quantizing magnetic field). Some ideas are illustrated in the free elec-
tron 2DES model and are applied to calculation of the two dimensional
de Haas- van Alphen effect. The main player in this game are the sharp
quantum oscillations of the chemical potential, µ(B, T ), which define
the magnetic oscillations of the all relevant physical properties.
Treatment in the spirit of this general calculation schema of the

thermodynamics of the strongly correlated systems as Q2D cuprates in
the normal state provides new insights in the meaning of the effective
mass and other physical parameters of these systems.
Among the most amazing condensed matter phenomena is the or-

bital magnetic phase separation in clean normal metals at low tem-
peratures, the well studied Condon domains. This instability is driven
by the magnetic interactions, i.e. by exchange of photons between the
conduction electrons.
We explain here, in a simple manner, how the sharp oscillations of

the chemical potential should drive the quasi-two dimensional (Q2D)
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dense electron systems to an orbital magnetic phase separation. These
Ideally Conducting Phases (ICP) are the 2D limit of the 3D Condon
domains. The unusual properties of the ICP’s, namely the quantum
Hall effect, expected to appear, even in absence of impurities, in each
magnetic domain, attracts the theoretical and experimental attention
for the last 20 years. Here we review shortly the main physical aspects
of this phenomenon.

PACS: 71.18+y,75.20En,73.50Jt.74.40Kn

1 Introduction

Magnetic quantum oscillations in metals [1] and semiconductors reflect the
discrete part of the spectrum of electrons in high magnetic fields (the Landau
levels [2]). Peierls has predicted in 1933 that the magnetic field dependence
of the magnetic moment of an ideal two-dimensional electron gas (2DEG)
should have a sharp saw-tooth form [3]. At that time 2D electron systems
have not yet been fabricated and the Peierls theory was just an exercise in
quantum statistics, illustrating the influence of the Landau quantization on
thermodynamics of electron gas in magnetic field.

The discovery of the quantum Hal effect (QHE) [4, 5], has stimulated,
during the last two decades, enormous interest to the physics of two dimen-
sional electron systems under strong magnetic field.

The review is organized as follows. After a short Introduction, Section
1, where we describe some of the main phenomena which occur in differ-
ent parts of the electron density vs magnetic field diagram, we develop, in
Section 2 a two-level approach to the calculation of the magnetic quantum
oscillations of the chemical potential in a free electron model. We apply.
in Section 3, the obtained analytical expressions for the temperature and
magnetic field dependence of the chemical potential, µ(B,T ), to calculation
of the thermodynamical functions such as magnetization, susceptibility, etc.
The treatment of the quasi-two dimensional nonlinear de Haas-van Alphen
effect and some properties of the Ideally Conducting Phases (ICP) [8], the
2D counterpart of the 3D Condon domains (see [9] for a detailed review on
3D Condon Domains), are described in Section 4, notably their quantum
Hall like properties. The thermodynamics of strongly correlated systems
and the influence of the lattice structure on Landau levels is presented in
Section 5. We are not touching here the problem of the coexistence of su-
perconducting order and Landau quantization. A detailed review on dHvA
oscillations in a superconductors is presented in [10].
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Figure 1: A concise diagram of most relevant physical phenomena in the
two-dimensional electron systems under strong magnetic fields as a function
as the filling factor, the horizontal axes.

Fig. 1 presents a concise diagram of most relevant physical phenomena
in the two-dimensional electron systems under strong magnetic fields as a
function the filling factor, the horizontal axes.

At low filling factors ν < 1 the Coulomb interactions completely govern
the physics of these systems and we have:

1. Wigner crystallization;

2. Fractional Quantum Hall effect;

3. Composite Fermions;

4. Integer quantum Hall effect (IQHE). At filling factors of the order
of unity, the physics is governed by the sample properties, like the
localization kind phenomena. This explains enormous precision of
the celebrated quantum Hall effect plateaus.

At higher filling factors, the Shubnikov de Haas oscillations develop.
At rather high filling factors, i.e. at high electron concentrations, for a

given magnetic field strength, which are typical for metals, the Coulomb in-
teraction is effectively screened and the magnetic interactions, i.e. exchange
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by the photons start to play a leading role in the thermodynamics of the
electron system in a quantizing magnetic field. This results in the orbital
magnetic phase separation in clean normal metals at low temperatures, the
well studied Condon domains.

The Ideally Conducting Phases [8] are the 2D limit of the 3D Condon
domains. The unusual properties of the ICP’s are very similar to those
in quantum Hall effect systems: zero resistivity within the domains and
plateaus in Hall resistance. The difference is that the chemical potential
is trapped in each magnetic domain within the Landau gap during finite
intervals of magnetic fields due to diamagnetic quantum phase transition
and not impurities, as is the case in semiconductors.

Let us remind first the main features of the celebrate quantum Hall ef-
fects: the integer one, IOHE, which originates in the pinning, by interplay
between the localized and delocalized electron states, of the chemical poten-
tial in the middle of the Landau gap and the FQHE - the fractional quantum
Hall effect, whose origin is in the electron correlations.

The most astonishing observation in IQHE is a set of precisely equidis-
tant plateaus, during the magnetic filed sweep (or gate voltage) in the Hall
resistance and concomitant zeros in the diagonal resistivity and conductivity
components Fig. 2. The plateaus in the Hall coefficients reflect the fact that
in QHE systems the chemical potential µ(H) is pinned to its value at zero
field, the Fermi Energy EF ≡ µ(H = 0), during the dHvA period. This is
accounted for by localization-delocalization of 2D conduction electrons on
Landau levels in presence of long range impurity potential.

In the absence of impurities the plateaus in Hall effect shrinks to points
σxy =

nec
H∗ = ν e2

~ . Here ν = 1, 2, ... is an integer filling factor, n is the concen-
tration of the delocalized electrons and H∗ denotes the ”center of plateau”
values of the applied magnetic field. Thermodynamically this corresponds
to the so called Peierls limit, where saw tooth magnetization oscillations
should be expected [3]. As it was analytically shown in [8], in this, clean,
limit the chemical potential is pinned to a Landau level during almost a
whole dHvA period even at finite temperatures. It crosses the Landau gap
at integer filling factors.

A renewed interest, in 80th, to the thermodynamics of the two-dimensio-
nal electron systems under strong magnetic fields was stimulated by the the-
oretical prediction [8] that a thermodynamic instability can pin the chemical
potential within the Landau energy gap for the most of the dHvA period,
resulting in the quantum Hall effect even in a clean 2DEG. Detailed study
of the quantum statistics and thermodynamics of two dimensional electron
systems at finite temperatures has been further developed in publications
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by different groups [11-32]. Experimental studies were reported in: GIC’s:
intercalated graphite compounds [33]; heterojunctions [34-37], and in highly
anisotropic organic materials [38-43].

Figure 2: The quantum Hall effect: precisely equidistant plateaus in the
magnetic field (or gate voltage) dependence of the nondiagonal resistivity
(Hall effect) and concomitant zeros in the diagonal resistivity and conduc-
tivity tenzor components.

2 Oscillations of the chemical potential

2.1 Fermi energy and chemical potential

As it was outlined above already, the cornerstone for the understanding
of statistics and thermodynamics of the two-dimensional electron gases in
quantizing magnetic fields is the knowledge of the temperature and magnetic
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field dependence of the chemical potential µ(B) [8, 11-32]. Huge degeneracy
of the energy levels and large energy gaps between them, results in sharp
magnetic oscillations of the chemical potential in these systems.

Figure 3: 2D dHvA as an anti-quantum hall effect: well developed plateaus
in Hall conductivity appear when the saw-tooth magnetization oscillations
are smeared.

The difference between the notions of the Fermi energy EF and of the
chemical potential µ(, T,B) can be understood as follows. According the
basic definitions of the quantum statistics [44] the Fermi energy EF is a
normalization constant defined by the density of states of a system under
consideration and the actual electron density. In 2DEG, where the density
of the electronic states is energy independent, EF ∼ no , here no is the
density of electrons.

The Fermi energy, EF , now, is the maximal occupied energy level in an
electronic system at zero temperature and in the absence of external fields
and at zero temperature.

Using the definition of the chemical potential as a minimal energy needed
to add a particle to a statistical system it is straightforward to see that at
T = 0 and in the absence of external fields, the chemical potential coincides
with the Fermi energy

µ(B = 0;T = 0) ≡ EF (1)

It is useful, therefore, to calculate the magnetic field dependence of the
chemical potential, keeping EF as a a point of reference.
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Figure 4: B∗ and Bo are defined as the values of the magnetic field corre-
sponding to the integer and half-integer filling factors respectively.

One should distinguish between three possible situations:
(a) The total number of electrons on the LL’s is field independent, while

the chemical potential is oscillating with an amplitude equal to the distance
between the adjacent LL’s. (N=const(B); µ = µ(B)). In this limit as we
will later show in details, the chemical potential in 2DES is ”trapped” by a
partially occupied Landau level during almost a whole dHvA period and will
cross the Landau gap in infinitesimally narrow region aroundH∗ , illustrated
in Fig. 4, defined by the Eq. 3. This is visualized by the ”Landau fan”, Fig.
5, and in more details on Fig. 6.

(b) The chemical potential is field independent, while the number of
electrons on the LL’s is oscillating with field. (µ=const(B); N=N(B)).

(c) Both, the chemical potential and the number of electrons on the LL’s
are allowed to vary corresponding to the external conditions.

In what follows we assume that the total number of electrons on the LL’s
is field independent and start with the calculation of the magnetic quantum
oscillations of the chemical potential.
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Figure 5: The Landau Fan: the magnetic field dependence of the chemical
potential in 2DEG under strong magnetic field.

Figure 6: In a 2D electron gas, the Landau levels just below and just above
the Fermi energy dominate the magnetic field dependence of the chemical
potential.
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2.2 Sharp Landau levels

Consider sharp (δ - functions) Landau levels at finite temperature. Equation,
governing the magnetic field dependence of the chemical potential, at T ' 0
reads:

g(B)Σ∞n=0fn = N (2)

where fn =
h
1 + exp

³
~ωc(n+ 1

2
)−µ(B)

kBT

´i−1
is the Fermi distribution, g(B) ≡

BS
Φo

is the degeneracy of the Landau levels, S -is the sample area and N is
the total number of particles.

We present here the analytical calculation of the temperature and the
magnetic field dependence of the chemical potential, in the framework of
the two-level approximation, developed, originally, in [8]. Let nF be the
highest partially occupied (less than to a half of its degeneracy) Landau
level, so that: ~ωc(nF - 1/2) < µ < ~ωc(nF+1/2). At typical experimental
conditions: T ' 1 K and H ' 10T, α≡ ~ωc

2kBT
' 80 , provided that the effective

mass is m∗' 0.1 mo. Therefore all the terms in the sum of Eq. (2) up
to n = nF - 2 could be replaced by fn<nF−2 = 1 with an exponential:
e−α << 1 accuracy, and the field dependence of the chemical potential is
defined by the distribution of electrons on the levels nF - 1 and nF . Eq.
(2) can be cast in the form, expressing the filling of two uppermost LL’s:
[1 + exp[xnF − α]]−1 + [1 + exp[xnF + α]]−1 = 1 + ñ, where:xn ≡ n~ωc−µ

kBT
and ñ ≡ ns

g − nF .
Obtained equation can be reduced to an algebraic quadratic equation for

y≡ exnF which can be easily solved to give the following field and tempera-
ture dependence of the chemical potential in 2dEG+H [8]:

µ (B,T ) = ~ωcnF − kBTln

"
−ñcoshα+√1− ñ2sinh2α

1 + ñ

#
(3)

Here ñ = N0− g(nF − 1) is the amount of electrons on the highest occupied
Landau level.

Eq. (3) shows that at T=0 : µ = ~ωc(nF + 1/2 ) for all the values of the
magnetic induction, apart of a discrete set B = B∗ , where the ”ln” term
diverges. In a narrow region, around the value B∗ where |A| expα < 1 the
chemical potential is, approximately:

µ'µ∗ − kBTA
eα

2
(4)

where µ∗≡~ω∗cnF . Therefore, at B 6=B∗the chemical potential is almost
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pinned to a Landau level, and is approximately in the middle of the energy
gap between the nF -th and nF + 1 LL’s at B ' B∗, Fig. 6.

To show qualitatively that the derivative of the chemical potential with
respect to B, in the vicinity of B∗, is exponentially ∂µ

∂t'eα large , Eq. (4),
let us consider, following [12], a two-level system, consisting of two adjacent
Landau levels, with the chemical potential in between. Around B = B∗ the
number of electrons N∗e in the upper LL and the number of ”holes” in the
lower LL are exponentially small: N∗

e = N∗
h'g∗exp−α. When the magnetic

induction B = B∗ is reduced by a small amount δB, the degeneracy of
each LL is reduced by the amount δg ' g∗ δBB∗ so that δg electrons have
to leave the lower level and to ”jump” on the upper one. Since the lower
level was already full, with an exponential: exp(-α) accuracy, its statistical
weight will not change noticeable. The upper level, however, changes its
occupation from exponentially small value: g∗ e−α to δg ' g∗ δBB∗ .

Figure 7: Increasing the magnetic field by an integer number of magnetic
fluxes Φo results in increased degeneracy of the Landau levels, thus changing
their statistical weight with respect to the chemical potential positioned in
the Landau gap.

The location of the chemical potential is determined by the ratio between
the number of electrons in the upper LL and the number of ”holes” in the
lower level: exp[ δµ

kBT
]|µ∗'Ne

Nh
= 1+ δg

N . For infinitesimally small δg one gets,

therefore: ( δµδB )B∗'− kBT
g∗

B∗Nh
'− kBT

noΦo
2B∗2 exp

α.
It is easy to show, now, that at T ' 0 the chemical potential is pinned

to a Landau level for all but a discrete set B=B∗ of values of the mag-
netic induction. Assuming | A | eα À1 , we expand the Eq. 3 to obtain:
µ'~ωc(nF − 1/2)− kBTln

(bo+b
bo−b ) where: b≡B −Bo is introduced.
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Figure 8: Spin splitted 2DEG Landau levels.

Figure 9: Magnetic field dependence of the spin splitted 2DEG Landau
levels.

2.3 Inclusion of spin

Let us assume, as usual, that the chemical potential is in the nF -th, Zeeman
spitted, Landau level, The population of the spin up and spin down branches
of the nF -th Landau level equals to the difference between the total number
of electrons and those on the lowest, n < nF , levels. Solving similar to the
previous example we obtain the magnetic field dependence of the chemical
potential, µ(B) to be:
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eµ(B) = − ln[− ¡1− f−1F

¢
chS +

q
(1− f−1F )2ch2S − (1− 2f−1F )] (5)

here eµ(B) ≡ µ(B)−~ωc(n+1/2)
kBT

, fσ,n = 1

1+exp
~ωc(n+1/2)+σβgH−µ

T

and s ≡ gβH
T

This result schematically is presented in Fig. 9. Detailed experimental
and theoretical study of the spin splitting resolved 2D dHvA in organic
material is presented in [39].

2.4 Finite DOS between the Landau levels

The presence of localized electronic states within the magnetic energy gap
such as, for example, impurity states or edge states, may lead to a significant
slowing down in the variation of the chemical potential with respect to B, or
even to the pinning of µ (a QHE situation). Following [12] we present here
a qualitative interpretation for slowing down of the chemical potential by
finite DOS in the Landau gap. Let us assume a constant DOS, D loc,between
LL-s. The number of electrons, trapped in the middle of the magnetic gap
is δµ D loc.The number of electrons on the upper level is now : Ne =

N∗
e + δg −D∗locδµand exp δµ

kBT
= Ne

N∗h
= 1 +

δg−D∗locδµ
N∗h

or

∂µ

∂B
|∗B'

·
1 +

Dloc

N2d

eα

α

¸−1 ∂µ
∂B
|freeB∗ (6)

where D2d is the density of states of the 2d electron gas. We see that
exponentially small density of states (DOS) between the Landau levels is
sufficient to slow down the motion of the chemical potential through the
magnetic gap.

Figure 10: Magnetization oscillations for the 2DEG with a finite DOS of
electron states in the Landau energy gap.
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The condition under which ∂µ
∂B retains its intrinsic behavior (i.e. ∝eα

α )
is that the density of localized states within the magnetic energy gap should
be exponentially small with respect to the density of states of the 2D free
electron gas: Dloc(E) < 4αe

−αDfree
2d

2.5 Landau level broadening

The broadening of the Landau levels has different origins and the shape of
the LL’s has different forms, respectively. The most important broaden-
ing mechanisms are the scattering by the short range impurities (Gaussian
form, usually), long range impurities (Lorentzian form in most cases) etc.
Depending on the sample and external parameters the broadening by the
same source may have different forms in different limits of parameters, as
temperature, magnetic field, sample structure etc. .We will consider here
just one example of broadening, namely of a form:

Do

Z ∞

−∞
dx

ch(ax)
= g(H) (7)

where D0 is the density of states in the middle of a Landau level and Γ is
its width. Given Γ we can find D0 from Eq. 7: 2Doa arctge

ax|+∞−∞ = πDo
a =

g(H) to get: Do = g(H)a/π. The normalization condition for the chemical
potential is: Do

R µ
−∞

dx
ch(ax) = A(B).

Figure 11: Magnetization oscillations of 2DEG with broadened Landau lev-
els.

Performing this integral, we arrive at eaµ = tgπ/2A and obtain the
following expression for the field dependence of the chemical potential: µ =
~ωc(nF − .5) + 1

a ln tg(πaA).
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Two Landau levels In order to get a smooth transition of the chemi-
cal potential between the neighboring Landau levels, we shall calculate the
magnetic field dependence of µ(B) in the case, when two adjacent Landau
levels are partially occupied (i.e. we take into account the tail in the density
of states of the nF - 1 Landau level, while µ is in the nF -th LL):

R µ
−∞

dE
ch(aE)+R µ

−∞
dE

ch[a(E−~ωc)] = Ag(H)
Do

= g(H)/DoE ⇒µ;E- ~ωc⇒µ− ~ωc.

Figure 12: Lorentzian broadening of Landau levels in 2DEG.

Performing the integration we get: arctg(eaµ) + arctg(eaµ
2−~ωc) =

Aπ/2. Using the relation: arctgx+ arctgy = (x+y)
(1−xy) + π (x > 0, xy > 0)

we obtain:

µ = ~ωc(nF − .5) +
1

a
ln[
−(1 + γ)±√(1 + γ)2 + 4γtg2(A)

2γtg(A)
]

where: eaµ = x and e−a~ωc = γ are introduced.

2.6 Finite kz-dispersion

In order to account for a finite warping of the Fermi surface one should
include in the calculation of the chemical potential a finite kz electron dis-
persion [28, 29]:

N =
ga

2π~

∞X
n=0

Z 2π~
a

0
fndpz (8)

where g is the degeneracy of a LL, a is the lattice constant in z direction (the
2D layer separation in heterostructures) and N — is the number of particles
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in a single layer. The chemical potential is situated between the two LL’s
with energies ~ωc(nF − 1

2) and ~ωc(nF +
1
2). We assume ~ωc À kT so that

only these two Landau levels make contribution to thermodynamics. One
can set fn = 1 for all n < nF − 1 and fn = 0 for all n > nF :

N = (nF − 1)g + ga

2π~

Z 2π~
a

0
(fnF−1 + fnF )dpz . (9)

The energy of electron is given by E = }ωc(n + 1
2) + Ez , where n is the

number of LL and the term Ez =
W
2 (1 − cos(pza} ) ) gives the dependence

of energy on the momentum along z axis. For ideal two-dimensional case
W = 0, and W 6= 0 describes the warping of Fermi surface. Later for
convenience we shall use another expression for Ez :

Ez =
W

2
cos (

pza

}
). (10)

The difference between expression (10) and the previous one consists of only
shifting the starting point of energy by a constant W

2 (which of course
does not change any physical result) and the shifting of starting point of
quasi-momentum pz by π}

a (that makes no difference because of subsequent
integration over the full period of pz).

In order to calculate the integral in (9) we use the condition

exp (− α+
W

2kT
±XF )¿ 1 (11)

which even forW ∼ ~ω is equivalent to √αÀ 1 and is usually fulfilled in the
experiments. Expanding over small parameter (11) and keeping only first
two terms one arrives at the following expression for the chemical potential

µ = }ωcnF + kTarch

Ã
ñeα

2I0(
W
2kT )

!
. (12)

Here the notation ñ = N
g − nF is used and I0(

W
2kT ) is the modified Bessel

function of argument W
2kT .

It is easy to see that in the limiting case W
2kT ¿ 1 , formula (12) coincides

with the expression for chemical potential without warping of Fermi surface,
Eq.(3), obtained in [8].
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3 Thermodynamic potentials

3.1 Thermodynamic relations in magnetic fields

Here we remind the definitions of different thermodynamic potentials, [1, 44]
which will be used in following sections:

The Helmholtz Free energy is :

F = U − TS (13)

where:
dU = TdS + µdN −MdB (14)

is the internal energy, T is the temperature, S is the entropy of a system
and µ is the chemical potential. The differential relationship reads:

dF = µdN −MdB − δdT ⇒M = −
µ
∂F

∂B

¶
V,T,N

(15)

The Gibbs thermodynamic potential Ω is connected with the Helmholz
Free energy F by the following relation:

F = Ω−Nµ (16)

and in differential form:

dΩ = −MdB − δdT −Ndµ⇒M = −
µ
∂Ω

∂B

¶
V,T,µ

(17)

In what follows we will be interested in the derivatives of these potentials
with respect to either H or B.

Magnetization is defined, therefore, either:

M(B) = −dF (B)
B

|N=const (18)

or

M(H) = −dΩ(H)
H

|µ=const (19)

depending on wether the electron density or the chemical potential is fixed.
In the next section we develop a simple procedure, based on the previ-

ously described two-level approximation, for calculating the magnetic field
and temperature dependence of the thermodynamic potentials and its deriv-
atives in 2DEG in quantizing magnetic field.
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3.2 Calculation of free energy

Magnetization is defined as a derivative with respect to magnetic field of
either the Free energy, F, Eq. (18) (constant number of particles) or of the
thermodynamic potential Ω, Eq. (19) (constant chemical potential).

Let us calculate the analytical expression for the magnetic field depen-
dence of the free energy F (B) = E(B) − TS in the simplest case of sharp
(δ - functions) Landau levels. The thermodynamical potential Ω(B) can be
written in the form:

Ω(B) = kBTg(B)
∞X
n=0

ln(1− fn) (20)

We employ here the approximation, similar to the one, used previously
for calculation of the magnetic field and the temperature dependence of the
chemical potential, and arrive at the following expression for the thermody-
namic potential:

Ω(B) ' −g(B)[−µ(B)nF−~ωcn
2
F + 1

2
+kBT ln (2 coshxF + 2coshα)] (21)

where: xn =
n~ωc−µ
kBT

.
The magnetic field dependence of the Free energy of a two- dimensional

electron gas in a magnetic field is given in Fig. 13.

Figure 13: The magnetic field dependence of the Free energy of a 2DEG in
a magnetic field.
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For finite kz dispersion the following expression for the thermodynamical
potential has been calculated [28, 29].

Ω = −kT ga

2π}

Z 2π}
a

0

∞X
n=0

ln
³
1 + e

µ−En(pz)
kT

´
dpz (22)

The calculation of sum and integral is analogues to those for chemical po-
tential. In the approximation W << }ωc the free energy is calculated to
be:

F = Ω+µN == g

½
nF

2

2
}ωc +

µ
N

g
− nF

¶
µ− kT e−α · 2 coshXF · I0

µ
W

2kT

¶¾
(23)

3.3 Magnetization

Differentiating the Free energy, with respect to magnetic field and using the
obtained expression for Ω(B), we obtain an analytical expression for the
magnetization of 2DEG at finite temperatures, [8]:

M(B) = −∂F (B)
∂B

=
2

φ0
[nFµ(B) + ~ωc

·
nF +

sinhα

2sinh(xF )

¸
−

~ωc(n2F + 1) + kBT ln[2cosh(xF ) + 2coshα]] (24)

where A ≡ nF − ns
g .

In order to guide an experimental study of dHvA in 2DEG, one should
obtain an analytical expression for the envelope of the magnetization oscil-
lations, i.e. the 2D analog of the LK formula.

The maxima (minima) of the magnetization, could be obtained from the
Eq. (24) by equating to zero the derivative ∂M

∂Bextr
= 0. It follows, that:

Bextr = B∗
·
1∓ 1

2α∗ (nF ± 1)
¸

(25)
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Figure 14: Envelop of the magnetization oscillations in 2DEG.

Keeping in mind that 1
2α∗(nF±1) ¿ 1 we substitute Bextr, defined by Eq.

(25), into Eq. (24) and obtain the analytical behavior of the magnetization
amplitude [19]:

Mextr ' ±EF

φo

·
1− 1

α∗
ln (2α∗)− 1

α∗

¸
(26)

Inclusion of the finite kz dispersion yields the following expression for
the magnetization [28, 29]:

M =
S

Φ0
}ωc{− nF ñ+

nF
2α
arsh

Ã
ñeα

2I0(
W
2kT )

!
+

(27)

+e−α · I0
µ

W

2kT

¶
· coshXF ·

µ
−1 + 1

α

¶
}

This is the expression for magnetization with warped Fermi surface. The
only restriction on the magnitude W of the warping is that it must be not
greater than energy difference between LL’s i.e. .

The values Bex of magnetic field at which magnetizationM has extrema
are given by

Bex = B∗
µ
1± 1

2α(nF + 3/2)

¶
(28)
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and the envelope of magnetization is obtained to be:

M± = ±SEF

2Φ0

(
1

α
arsh

Ã
eα

4αI0(
W
2kT )

nF
nF + 3/2

!
− 1

α

nF + 1

nF + 3/2

)
(29)

In the limit W
2kT ¿ 1 and nF À 1 this formula coincides with one, ob-

tained for the ideal two-dimensional case [19] : M± = ±SEF
Φ0

£
1− 1

α ln(2α)− 1
α

¤
.

In the inverse case of large warping formula (29) becomes:

M± = ±SEF

Φ0

"
1− W

}ωc
+
1

α
ln

Ã√
kT · πW
}ωc

!
− 1

α

#
, (30)

This formula differs substantially from the ideally-2D one, Eq. (26). The
amplitude of the oscillations depends approximately linearly on the size of
warping W.

3.4 Susceptibility

As it was shown above, the saw tooth form of the magnetization of the two-
dimensional electron gas in a magnetic field results in a constant, between
the adjacent B∗ orbital susceptibility: χorb= dM(B)/dB.

At finite temperature the expression for the 2D magnetic orbital sus-
ceptibility is given by the derivative of the magnetization, Eq. (30). This
expression defines χ in the case when the chemical potential lies in the nF -s
Landau level. Between the two adjacent Landau levels the susceptibility
should take, at T=0, infinite negative values. Finite temperature smooths
out this unphysical ”jumps” and, as it was shown in [12], results in expo-
nentially (exp ~ωckBT

) sharp spikes.
When the Landau levels are broadened, the susceptibility oscillations

are smoothed out, as in Fig. 15. It is also shown in [12], that in 2D the
differential relationship between M(B) and Ω turns to be an algebraic one,
that is:

M(B) = −Ω(B)
B
− E(B)

B
(31)

Differentiating, now, M with respect to B, we obtain:

χ(B) = −
µ
∂2F (B)

∂B2

¶
ns,T

=
1

B

·
ns

∂µ

∂B
− ∂E

∂B

¸
(32)

One can see, from this relationship, that χorb is proportional to the
∂µ
∂B in a

narrow vicinity of B∗.
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Figure 15: Susceptibility oscillations of 2DEG with broadened Landau levels.

Since E(B) ∝ B2 the second term is const(B), between the B∗ s. The
second term in Eq. (32) involves the derivative of E(B) with respect to B.
Unlike the first term this one does not diverge in the zero temperature limit
since E(B) is a continuous function of B at T=0. Therefore the dominant
contribution to the spikes in the OMS originates in the chemical potential
derivative with respect to B.

Within this narrow region the OMS is, therefore, a direct measure of the
derivative of the chemical potential µ with respect to B, so that by mea-
suring experimentally the magnetic susceptibility one can get an important
information on the magnetic field dependence of the chemical potential in
two-dimensional electron gas under strong magnetic fields.

4 Ideally conducting phases

4.1 Magnetic interactions

Among the most amazing condensed matter phenomena is the orbital mag-
netic phase separation in clean normal metals at low temperatures, the well
studied Condon domains. This quantum phase transition is driven by the
magnetic interactions, i.e. by exchange of photons between the conduction
electrons [45]. As it was outlined, for the first time by D. Shoenberg [46],
the energy spectrum of electrons in a metal under strong magnetic fields is
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defined by magnetic induction B = H +M(B), rather than by the external
field H (the Shoenberg conjecture). This means that the dynamics of each
charge is influenced by a magnetic moment produced by all the remaining
charges [1, 46, 47]. As a result, a self-consistent nonlocal (current-current)
interaction [45] is produced between the charges. The difference between H
and M(B) becomes significant when the amplitude of magnetization oscil-
lations is comparable with their period. Under such conditions the maximal
differential susceptibility χm = ∂M

∂B approaches 1/4π and the electron sys-
tem becomes unstable toward magnetic phase separation.

The microscopic theory starts with the Hamiltonian [45]:

HHNP = Hγ
0 +

~2

2m

µ−→∇ + ie

~c
−→
A

¶
ψ+
µ−→∇ ie

~c
−→
A

¶
eψ + U (33)

Here Hγ
0 is the free radiation field part of the HNP Hamiltonian den-

sity, ψ is the second-quantied electron field and U contains all other, non-
electromagnetic electron interactions.

The self-consistent vector-potential is defined by

−→
A = e

−→
A o +

−→
Ar (34)

where

−→∇ ×−→A o =
−→
Ho (35)

are the external fields and

¤2−→Ar = −
·−→
j − 1

∇2
³−→∇ ·−→j ´¸ (36)

is the radiation field, arising from currents induced in the medium, respec-
tively. Here ¤2 ≡ ∇2 − 1

c2
∂2

∂t2 and the operator for the electric current is

−→
j = −∂HHNP

∂
−→
A

=
e~
2imc

³
ψ+
−→∇ψ −−→∇ψ+ψ

´
− e2

mc2
−→
Aψ+ψ (37)

4.2 Condon domains

In sufficiently pure three-dimensional metals, the magnetization may ap-
proach the value of the dHvA period. This will result in a phase transition
to a new electronic state with inhomogeneous magnetization (Condon Do-
mains). The phenomenon of domains associated with the orbital magnetic
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moment has been discovered in different metals as: beryllium [48], silver [49]
and aluminium [50].

Let us consider the stability of the electron gas in magnetic field using
the Pippard’s phase diagram in H-B plane, Fig. 16. In the high-field portion
of the diagram, where the slope χn(nF ) of the M(B) curve is smaller than
1
4π , the slope of the H(B) curve is positive and for each value of external
field H in this region there is only one value of B on the H(B) curve.

If the field H is lower, such that

χ(B) >
1

4π
(38)

the slopes of the linear portions of the curve are always negative and for
each value of H there are at least three different values of B on the H(B)
curve.

Figure 16: The Pippard constuction for the nonlinear de Haas van Alphen
effect.

The coexisting Condon domains represent different phases of a metal
with different magnetization. Thus, the transition from the homogeneous
phase to the domain one can be considered as a diamagnetic phase transi-
tion occurring in each dHvA cycle when sweeping an external magnetic field
at 4πχm > 1. At a fixed external field, a temperature decrease causes an
increase in the magnetization amplitude, and, therefore, drives the diamag-
netic phase transition.
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The structure of the Condon domains in three-dimensional metals was
studied theoretically in the 60th and early 70th: [45,54-57] and was gener-
alized in 90th to include dynamic and kinetic phenomena, see for a recent
review [9].

4.3 Ideally conducting phases

Renewed interest in these phase transitions for electron gases under strong
magnetic fields was stimulated by the theoretical prediction, [8] that the
sharp oscillations of the chemical potential in two-dimensional dense elec-
tron system may result in a domain state with the quantum Hall effect prop-
erties in each domain. Namely, within each domain the chemical potential
is pinned between two adjacent Landau levels Fig. 18, i.e. to a particu-
lar quantum-Hall plateau, with Hall resistivity quantized and longitudinal
resistivity vanishing.

Such a nondissipative, QHE - like, state, presents the Ideally Conducting
Phases (ICP): a two-dimensional manifestation of Condon domains. In [20]
the Ginsburg-Landau equation, corresponding to this phase transition, is
developed.

The corresponding H-B diagram in the two-dimensional case is presented
in Fig. 17

For all values of B between B1c and BII
c ≡ B1c√

2
there are no more than

three values (B<, B0 and B> ) on the H(B) curve for each value of H.
Using the Maxwell construction, we observe that the stable solutions of the
equation:

B = H + 4πM(B) (39)

in the case of Q2DEG correspond to the Quantum Hall Effect-like nondissi-
pative state.

Indeed, the negative slope on the H vs B curve appears at the field:

HI =

·
2mc�

2
F

~2d

¸ 1
2

(40)

which corresponds to the number of filled Landau levels, given by the fol-
lowing expression:

nF =

r
m∗c2d
2e2

(41)

where d stands for the distance between the electron layers in the case of a
quasi-two dimensional layered conductor.
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Figure 17: Schematic illustrations of (a) the chemical potential, (b) the
magnetization M, and (c) the magnetic field H as functions of the magnetic
induction B at zero temperature. B< , B> , and B0 are defined in the text
and �F is the value of the chemical potential at zero magnetic field

Therefore, applying the Maxwell construction to determine the equilib-
rium condition for coexistence between the two phases, one finds that the
chemical potential for the entire system is located at

µ = ~ω>c nF = ~ω<c (nF + 1) = ns
2π~2d
mc

(42)

where ω>c ≡ eB>

cm∗xy
, ω<c ≡ eB<

cm∗xy
, B> ≡ BnF =

(noφ0)
(nF )

and B<≡BnF+1=
(noφ0)
(nF+1)

where no is the areal density of electrons, which is constant throughout the
sample and φ0≡hc

e is the flux quantum. Thus each phase plays the role of an
electron reservoir for the other phase, keeping the chemical potential fixed
in a midgap position.

In other words, for each phase the chemical potential is located in the
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Landau gap, i.e. separates the highest occupied Landau level from the level
just above it so that the ideal conductivity is expected to occur in the interior
of each phase. Significant deviations from ideal conductivity may occur in
the transition zones separating different phases but the overall effect on the
conductivity of the whole sample should be small because of the small size
of the transition zones.

Figure 18: a) The magnetic field energy of the two-dimensional electron
gas; b) The variation, with external magnetic field, of the areas S1,2 of two
different phases; c) The position of the chemical potential in neighboring
ICP’s; d) The plateuas in the Hall conductivity, expected in the Ideally
Conducting Phases.
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Below the critical field (Bc=no
φ0
nc
) the translational symmetry in this

system is broken and the self-consistent field B becomes spatially inhomo-
geneous. If the field varies slowly over a cyclotron radius: Rc=aH

√
(2nF ) ,

aH≡√
¡
c~
eB

¢
is the magnetic length, one may define local Landau levels by

using an average of the inhomogeneous field over a cyclotron orbit.
The magnetic field value, corresponding to the first appearance of more

than three solutions for Eq. (39), as can be easily seen from the Fig. 19 is
defined by the condition:

H
¡
B<
nF

¢
= H

¡
B>
nF−1

¢
(43)

This condition yields:

HII =
1√
2
HI (44)

Figure 19: The minimal value of the magnetic field, corresponding to a
threefold solution of the Pipparrd construction..

Since B(x) varies between the values B<≡ (noφ0)
(nF+1)

and B>≡ (noφ0)nF
of the

field deep inside each domain, one may define a mean field for the domain
wall region by:

B0≡12 (B<+B>)'BnF (45)

and a fluctuating field:

B1 (x)≡B (x)−B0 (46)
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with |B1(x) |< B0
2nF

<<Bo..
The coefficients of the Ginzburg - Landau equation for the diamagnetic

phase transition into a two-dimensional Condon domain state have been
calculated microscopically in [20] and explicit expressions for the critical
temperature and for the temperature dependent coherence length have been
obtained. The obtained analytical expressions permits to calculate the effect
of critical fluctuations on the diamagnetic susceptibility above the critical
temperature.

The coefficients of this expansion can be directly calculated from the
closed analytical expression for M(B) obtained in Ref.[8]. The expressions
for the susceptibility χ (B0) and its first and second derivatives are thus [20]:

χ (B0)=χ0−χ0
(4kBT )

~ωc,0
(47)µ

∂χ

∂B

¶
B=B0

=0 (48)µ
∂2χ

∂B2

¶
B=B0

=−χ0
b20

(8kBT )

~ωc,0
(49)

and

b0≡ B0
2nF

. (50)

Thus the resulting equation for b1 (x)≡B1(x)
b0

has a Ginzburg-Landau like
form:

�b1 (x)−ξ20
d2

dx2
b1 (x)+b

3
1 (x)=0 (51)

where the coherence length ξ0 is given by:

ξ20≡
µ
3

32

¶
rc
2 (kBT )

~ωc,0
(52)

and �≡32
³
(T−Tc)

T

´
. The critical temperature Tc can be readily obtained from

the requirement: 1/4π−χ (B0)=0 with χ (B0) defined above. The result is:

Tc=
~ωc,0
4kB

µ
1− n2c
n2F

¶
(53)

where nc is the critical value of nF , or in terms of the critical field Bc by
nc=

(noφ0)
Bc.

.
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The non - uniform solutions of Eq. (51) below Tcare :

b1 (x)=±√|�|tgh
·

x

ξ (T )

¸
(54)

where ξ (T ) is the temperature dependent coherence length given by:

ξ (T )≡(
√
2ξ0)√|�| (55)

Eq. (51) is analogous to the G.L. equation describing a domain wall
between the superconducting and the normal regions in the intermediate
state of a type-I superconductor

5 Magnetization currents

Let us start with

b = h+ 4π [M (Bo + b)−M (Bo)] (56)

where h is the magnetic field, b is the magnetic induction of the wave
and M is the magnetization, defined by

M = −m
X
r=1

Ar sin

·
2πr

µ
F

B

¶
+ ϕr

¸
(57)

which is the Landau-Lifshits-Kosevich formula, with

F =
heSextr
2πc

(58)

5.1 Nonlinear dynamics in ideally conducting phases

Due to the nondissipative nature of the ICP’s a rich dynamics of the fields
and currents should be expected. Indeed as we can see from Fig. 20 the
logistic map constructiion of the Feigenbaum kind theory of chaotic phenom-
ena can be applied to study the unusual electrodynamics of two-dimensional
electron systems under strong magnetic fields. This is in fact a nonlinear
and a nonlocal Chern-Simon electrodynamics, studied in details in [64-67]
the dHvA frequency.

For b small compared to the dHvA period, we can use linear appoxima-
tion

h = b− 4π∂M
∂B

bb=0b = µeb (59)
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Figure 20: Schematic construction of the logistic map in ideally conducting
phases.

Now the wave equation takes the form

σE =
ic2

4πω
[k × (k ×E)]− 4π [k × χ (k ×E)] (60)

and has an additional to equation term

jm =
ic2

ω
4π [k × χ (k ×E)] (61)

and we arrive at·
σxx +

µ
ic2k2

4πω

¶µ
1− 4π∂M

∂B
sin2 θ

¶¸
Ex + σxyEy + σxzEz = 0 (62)

The difference can be accounted by substitution

σik → eσik = σik

µ
1− 4π∂M

∂B
sin2 θ

¶−1
Ex + σxyEy + σxzEz = 0 (63)
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Figure 21: Bifurcation patern in ideally conducting phases.

5.2 Relativistic invariance of ICP and of quantum Hall effect

Relativistic and scaling invariance of a non-dissipative two-dimensional elec-
tron system under strong magnetic fields, which is the case in ICP and QHE
systems can be obtained from the following simple phenomenological con-
sideration [7].

Under very general conditions, in the theory of continuous media the in-
duced charges and currents are linearly connected with electric and magnetic
fields:

Jµ = ΞµνρF
νρ (64)

where jµ is the current, Fνρ is the electromagnetic field strength tensor, and
Ξµνρ are the coefficients, defining the physical properties of a conducting me-
dia. The coefficients express the linear response of the medium (conductor,
insulator, ferromagnet, etc.) to applied fields. In all the usual condensed
matter cases medium destroys relativistic invariance of Maxwell equations.
In the vacuum, which is a relativistically invariant medium, Ξµνρ is zero.
If the coefficients Ξµνρ form an invariant tensor: Ξ0µνρ = Ξµνρ where prime
corresponds to a moving frame, the medium would preserve the relativistic
invariance. In D + 1 space-time dimensions the only constant tensors are
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the metric tensor gµν and the totally antisymmetric D + 1 component tensor
�µν ... . In 3 + 1 dimensions it is impossible to construct a nonvanishing
constant three component tensor, out of gµν and �µνρσ. Therefore the only
relativistically invariant medium in 3+1 dimensions is the vacuum, where
Ξµνρσ = 0.

However in 2 + 1 dimensions such a tensor may exist: σµνρ ∝ �µνρ. Let
us show that this situation is realized under the QHE conditions.

Indeed, in the QHE medium (in the plateau regime) the material equa-
tions are:

j1 = σxyEy ≡ ναE2; j2 = −σxyEx ≡ −ναE1 (65)

where ν is the filling factor and α is the fine structure constant. These two
equations for the Hall currents could be cast in a form:

ji = ν�ij0E
j (66)

where i, j = 1, 2. The zero component of current

j0 = ναB3 (67)

is, in fact, the Faraday law for a nondissipative medium:
R
j0 ∝ Q ≡

να
R
Bz.
Eqs.( 66,67), at ν = 1, could be cast in a form:

ji = 2cαeijkFjk (68)

Eq. (68) follows also from an action:

SA ∝
Z

d3x

·
−1
c
jiAi + αeijkAiFjk

¸
.

Indeed, the variation of this action:

δSA ∝
·
−1
c
jiAi + 2αe

ijkAiFjk

¸
δAi = 0 (69)

yields Eq. (68).
The mentioned above Lorentz invariance of QHE is connected with the

Chern-Simons term, which is a new, compared to 3D electrodynamics, term
in Lagrangian.

Inserting Eqs. ( 66,67) into the effective Maxwell equations, we obtain
the macroscopic equations in medium in Fourier space [6, 7]:

kµFµν = να�µνρ
√
k2Fνρ; �µνρ∂µFνρ = 0 (70)
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or
∂µFµν = να�µνρ

√
∂2F νρ (71)

The Lagrangian, generating these equations is:

L = 1

4
fαβ

θ(∂α∂
α)√

∂α∂α
fαβ + ν�αβγa

αfβγ (72)

where the first term is the vacuum Lagrangian, and the second is the Chern-
Simons term.

It can be easily shown explicitly by performing Lorentz transformation
for the currents and fields, that the nondiagonal components of the conduc-
tivity tensor preserves the Lorentz invariance while the diagonal components
destroy it. This will be elaorated in details in what follows.

5.3 Composite Fermions-Chern-Simons gauge transformed
particles

It is known that the integer quantum Hall effect (IQHE ) can be qualita-
tively understood on the basis of the single electron wave functions in the
electrostatic potential of the long range fluctuations in th sample, the frac-
tional quantum Hall effect (FQHE) is essentially a many-body phenomenon,
and was extensively studied, mainly in the framework of the "Laughlin wave
function" formalism [60]. A very popular model of Composite Fermions was
suggested by Jain, who used a very transparent picture of magnetic fluxes
attached to an electron, in the spirit of the Faraday magnetic flux lines
piercing the conducting media.

The vector potential, associated with this flux tube (solenoid) may be
written as:

�a(�r) =
Φ

2π

�z × �r

r2
(73)

where �z is a unit vector along the z - axis. The magnetic field B, associated
with such vector potential is that of a vortex of strength Φ, localized at the
origin:

�B = curl�a = Φδ(�r) (74)

where the δ-function arises from the singularity, at �r = 0 of the vector
potential, Eq. (73). The magnetic flux, connected to such field is:Z

�Bd�s = Φ (75)
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The Schrödinger equation for a particle in such a field, is:

Ĥ(Φ)ψ(r) =
1

2m

³
�P − e

c
�a
´2

ψ(�r) = Eψ(�r) (76)

where the canonical momentum operator �P is:

�P = −i~ ∂

∂�r
(77)

The wave function ψ(�r) should be periodic under rotations on the angle
θ = 2π around z-axis.

For the flux-tube-particle composite, the spectrum of the angular mo-
mentum is:

cz = ~
µ
m− Φ

Φ0

¶
(78)

FollowingWilczek, the angular momentum of this composite particle is equal
to

s =
cz(m = 0)

~
= − Φ

Φ0
(79)

In general, s is neither integer nor half integer, and can take any value. If we
interchange flux-tube-particle composites we will have an additional phase
factor. Since the interchange of two such composites can give any phase,
Wilczek called them anions.

For a system of N flux-tube-particle composites, the charged particle
feels the vector potential of flux tubes, "glued" to all the other particles.
The corresponding Hamiltonian can be written as follows:

Ĥ =
1

2m

NX
i=1

³
�P − e

c
�ai(�ri, . . . �rN)

´2
(80)

with the vector potential:

�ai =
Φ

2π

X
j 6=i

�z × (�ri − �rj)

(�ri − �rj)2
=
Φ

2π

X
j 6=i
∇θij (81)

where θij is the angle between the vector �ri − �rj and the x-axis. This
effective vector potential is nonlocal, since it depends on the position of all
particles and, in particular, it vanished at N = 1. The Hamiltonian, Eq.
(80), describes the interaction of charged particles with the Chern-Simons
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Figure 22: Magnetization oscillations in composite fermions. Note the sym-
metry aound the ν = 1

2 filling factor.

gauge field, and this vector-potential corresponds to the following effective
magnetic field:

�B0i = �B − Φ
X
j 6=i

δ(�ri − �rj) (82)

which can be presented as

Beff = B − Φ
Φ0

2π~c
e

ne = B

µ
1− Φ

Φ0
2πc2Bne

¶
= B

µ
1− Φ

Φ0
ν

¶
(83)

As it follows from Eq. (83), the effective magnetic field Beff is equal to
zero for the magnetic flux Φ = Φ0

ν . The case of the filling factor ν =
1
2n

is of special interest, because for Φ = 2nΦ0 the statistics of particles is not
changed. A very interesting situation corresponds to the filling factor ν = 1

2 ,
when the dimensionless magnetic flux

Φ̃ =
Φ

Φ0
(84)

is equal to 2. The completely filled Landau level with m = 1 and Beff = 0
corresponds to Φ̃ = 1.
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Figure 23: Susceptibility oscilations in composite fermions.

6 Lattice effects in correlated systems

The field of highly correlated systems such as heavy fermions and high -Tc
copper oxides have been attracting considerable attention during the last two
decades. The presence of strong on-site Coulomb repulsions distinguishes
these systems from other large family of traditional superconductors where
phonons play a dominant role. This has motivated experimental activities
in measuring the de Haas-van Alphen (dHvA) effect in strongly correlated
systems [64-67].

There are two main difficulties in observing the dHvA effect in high -Tc
superconductors. First, within the accessible range of stationary magnetic
fields, the Larmor radii in the copper-oxygen plane is roughly of the order
of magnitude of the mean free path of the existing samples. Second, a
magnetic field exceeding the upper critical field Hc2 is needed to reach the
normal state. For example, Hc2 for YBa2Cu3O7 is in the range [67] of
100T in low temperatures. The improvements in the sample quality and the
development of high field magnets may overcome the difficulties in future.

Despite these difficulties, several attempts have been made to observe
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Figure 24: The Hofstadter fractal spectrum (the butterfly) for the Landau
electron in a periodic potential.

the dHvA effect in the YBa2Cu3O7 compound [67]. These experiments
show some features of the Fermi surface predicted from band structure cal-
culations based on the local-density-approximation (LDA). A study of the
dHvA effect based on the marginal Fermi liquid theory suggests [21] that
when the frequency dependent effective mass is introduced the reduction in
amplitude by self-energy term is similar to that of canonical Fermi liquid
theory. This work, however, does not account for the contributions from the
lattice and Coulomb correlations.

Any analysis of the dHvA effect data by using the standard Liftshitz-
Kosevich form [68] which neglects the lattice and the Coulomb correlation
effects may not be complete because the copper-oxide system is described
by a tight-binding model, and strong on-site Coulomb correlations are con-
sidered relevant interactions for the system.

The lattice effects on the dHvA oscillations in the presence of strong
Coulomb correlations have been considered in [22]. The lattice effects are
manifested in both the periodic potential, and the coupling between a qua-
siparticle and the lattice distortion. The former is described by the tight-
binding band structure, and the latter is described by the electron-phonon
interaction. In what follows, the terms potential and interaction effects re-
fer to the contributions from the periodic potential and the electron-phonon
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Figure 25: The Feynman diagrams for the Coulomb screened electron-
phonon coupling constant. The first and the second diagram on the right-
hand side refer to the contributions from the renormalized band structures
and the dynamical screening effects, respectively.

interaction, respectively. It is assumed in [22] that the contribution of
Coulomb correlations is to renormalize the band structure and to screen the
electron-phonon interaction. Hence, the term Coulomb correlation effects
is used to refer to the Coulomb renormalized band structure effects.

Due to the underlying lattice, the motion of electron in the magnetic
field is restricted, and, as a consequence, the states in a tight-binding band
(in zero field) split [69] into a series of magnetic subbands called Hofstadter
spectrum. Because the number of states is equally partitioned in each mag-
netic subbands, the field dependence of these subbands are complex due to
the presence of a van Hove singularity in the density of states

N(E) =
1

(2π)2

Z
E

dk

υk
(85)

at half filling. (Half filling, in the Fermi liquid picture, corresponds to zero
hole doping concentration, x.) Here, υk is the quasiparticle velocity. It
is noted that Coulomb correlations renormalize the tight-binding band via
shifting the center of the band upward in energy by λo and via reducing
the bandwidth from 4t to 4t∗. Hence, near half filling, both the potential
and the Coulomb correlation effects significantly change the dHvA effect
from the free electron-like behavior. The deviation from the free electron-
like behavior in low fields is measured by the filling fraction, ν = 1

2(1− x),
dependence of the dHvA effect and by the magnetic field dependence of
the effective mass. (Here, the term low refers to the low field regime of
the Hofstadter spectrum where the magnetic subbands are approximated as
single energy levels. This regime corresponds to the field strength much less
than one flux quantum through a plaquette.)

Both the potential and the Coulomb correlation effects lead to the mass
enhancement as a function of ν. The potential effect leads to the increase
in the effective mass as the van Hove singularity is approached, while the
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Coulomb correlation effects lead to the diverging mass via Brinkman-Rice
localization [70] as half filling is approached.

In [22], for simplicity, the one-band Hubbard Hamiltonian is applied to a
square lattice as a model for correlated systems. The Coulomb correlations
in the infinite U limit are considered by using the slave boson technique
and the systematic 1/N expansion scheme is employed in determining the
Coulomb screened electron-phonon coupling constant self-consistently in or-
der to estimate the interaction effect.

To employ the auxiliary bosonization scheme [72], the infinite Coulomb
correlation U limit can be chosen and the Hubbard Hamiltonian can be
written as:

H = −
X

<ij>,σ

ti,j(C
†
i,σeie

†
jCj,σ + h.c.) (86)

where the operators C†i,σ and e
†
i create the half-full and empty occupation

state at the site i, respectively. The matrix element ti,j denotes the effective
hopping between nearest neighboring copper sites through an oxygen ion. In
the U =∞ limit, only the half-full and empty occupation states are allowed;
therefore, the constraintX

σ

C†i,σCi,σ + e†iei = 1 (87)

is imposed via a Lagrange multiplier λi to forbid double occupancy at each
sites. In this way, the Coulomb correlation effects are described by ei and λi.

In magnetic fields, Bose operators e†i and ei, and the Lagrange multiplier
remain unchanged, but the hopping matrix element acquires a phase term

ti,j → ti,je
i 2π
φo

j
i A·dl (88)

where A is a vector potential. For convenience, the Landau gauge A =
B(0, x, 0) is chosen with the externally applied uniform magnetic field point-
ing in the z-direction. In mean field theory, the energy spectrum is computed
by replacing Bose operators and Lagrange multiplier with their saddle point
values (< e†i >=< ei >= eo and λi = λo)

H = −e2ot
X

<ij>σ

(e
i 2π
φo

i
j A·dlC†i,σCj,σ + h.c.) + λo

X
i

(
X
σ

C†i,σCi,σ + e2o − 1) .

(89)
The variational parameters eo and λo indicate that Coulomb correlations
lead to band renormalization, and their effects become strong as x (∝ e2o) is
decreased.
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In Landau gauge, Hamiltonian Eq. (89) is invariant under the transla-
tion (y → y + a) in the y- direction; however, it is not invariant with the
translation (x→ x+a) in the x- direction. Here, a is the lattice parameter.
This is the consequence of our choice of gauge in which a magnetic field
affects, only, the motion of electrons in the x- direction. When the flux φ, in
units of φo, through a plaquette of area a

2 is a rational fraction p/q (both p
and q are prime integers), the Hamiltonian is invariant with the translation
(x→ x+ qa). This translation corresponds to a magnetic superlattice with
a primitive cell (q × 1)a. In the Bloch diagonalization of Eq. (89) in both
the x and y-directions, the Fourier representation of the half-full occupation
operator

Ci =
1p
N 0
xNy

X
k

Cγ
ke

ik·ia (90)

is substituted into the Hamiltonian. Here, N
0
x = Nx/q, and the magnetic

Brilliouin zone is given by (−π/qa ≤ kx ≤ π/qa,−π/a ≤ ky ≤ π/a). When
the sum is taken over the site index i = (ix, iy) in Eq. (89), the Hamiltonian
becomes

H = N{
X
k

qX
γ=1

Cγ†
k Cγ

k [λo − 2
r2o
t
cos(kya− 2π φ

φo
γ)] −

−r
2
o

t

X
k

qX
γ=1

[Cγ†
k Cγ+1

k eikxa + Cγ†
k Cγ−1

k e−ikxa] + λo(
r2o
t2
− 1

N
)} (91)

where ro = eot/
√
N , and the index γ denotes the position within a magnetic

supercell. Here, the sum over the spin index σ leads to the degeneracy factor
N . The energy spectrum obtained by diagonalizing the Hamiltonian Eq.
(91) is the Hofstadter spectrum for strongly correlated electrons.

Due to the small lattice constant, extremely strong magnetic fields (for
a =4A, φ/φo = 1 corresponds to B=2.6×104T) are needed to observe a
complete Hofstadter spectrum in the cuprates, but for the purpose of the
dHvA effect calculation, the low field behavior of magnetic subbands is
most relevant. Following two properties of magnetic subbands are worth
discussing at this moment. First, the electronic states (in the zero field) are
quenched to form magnetic subbands, and there is gap between two adjacent
subbands. Due to the Van Hove singularity, the size of gap is not uniform and
has nonlinear dependence on both the filling fraction and the field strength.
The energy gap shrinks monotonically as either the filling fraction ν = 1

2
is approached or the magnetic field is decreased. Second, the magnetic
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subbands away from the band center appear as single degenerate energy
levels. In low fields, there are many subbands that behave as single levels;
hence the oscillation in magnetization becomes sharp. As the magnetic
flux through a plaquette decreases (i.e., q → ∞), the number of magnetic
subbands that behave as single levels increases since the overall number of
magnetic subbands increases, and their bandwidth narrows. (As q → ∞,
the ratio of energy gap to the bandwidth vanishes [69].) In low fields, lowest
several magnetic subbands are virtually identical to Landau levels. For this
reason, when the filling fraction is low, the potential effect is absent, but it
becomes pronounced as half filling is approached.

The nonlinear field dependence of the energy gap due to the underly-
ing lattice leads to the ν dependence of the effective mass. This is easily
demonstrated in low fields. In the long magnetic length lm limit (lm =
a
p
q/2 >> a corresponding to φ/φo << 1), a simple expression for energy

levels is obtained by solving the Schrödinger equation

H | Ψ > = E | Ψ > . (92)

When the Hamiltonian Eq. (91) acts on the eigenstate

| Ψ > =

qX
γ=1

gγkC
γ†
k | 0 >,

Eq. (92) becomes the difference equation

[λo − 2r
2
o

t
cos(kya− 2π φ

φo
γ)]gγk −

r2o
t
[gγ+1k eikxa + gγ−1k e−ikxa] = gγkE . (93)

In the continuum limit, Eq. (93) is written as the equation of motion for a
harmonic oscillator, [71] and eigenenergy is given by

En = Ξ + ~ωc(n+
1

2
) (94)

where

Ξ = [λo − t(2 +
cos2kFa+ 1

coskFa
)]
Nr2o
t2

+ λo(N − 1) . (95)

Here, ωc = eB/m∗c is the cyclotron frequency, and kF denotes the Fermi
vector in the y-direction. The eigenenergy Eq. (94) for the low field Hofs-
tadter spectrum differs from a series of Landau levels in the following ways:
the energy levels are shifted by Ξ, and the separation between neighboring
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energy levels depends on the x dependent effective mass m∗. The x depen-
dence of m∗ which arises from both the potential and Coulomb correlation
effects is reflected in the expression of the renormalized cyclotron mass

m∗ =
~2t

2a2Nr2o
· 1

(coskFa)1/2
(96)

where the factors (coskFa)−1/2 and r−2o result from the potential and Coulomb
correlation effects, respectively. Due to the potential effect, the divergence
of m∗ in Eq. (96) as x→ 0 is stronger than from the Coulomb correlation
effect alone.

6.1 Magnetization oscillations

The resemblance between the magnetic subbands (in low fields) and a series
of Landau levels can be used to calculate the magnetization curve. As we
have discussed previously, there are two notable differences between the
lattice and the free electron gas systems. Namely, the energy gap between
two adjacent levels is not uniform, and the field dependence of magnetic
subbands is not linear. These differences lead to the magnetic field and the
x dependence of cyclotron mass, chemical potential, and magnetization.

In the Luttinger-Bychkov-Gorkov formalism [73] the thermodynamic po-
tential is

Ω = − 1
β

X
iωn

Tr{ln[−G−1(k)] +Σ(k)G(k)} + Ω
0{G} (97)

where β = 1/kBT , G(k) = 1/(iωn − Ek − Σ(k)) is the proper quasiparticle
Green function, and Σ(k) is the electronic contribution to self-energy. Here,
k denotes the three momenta (k, iωn) where iωn = i(2n + 1)π/β is the
discrete Matsubara frequency for fermions. It has been suggested [15] that,
in strongly interacting electron systems in three dimensions, this self-energy
contribution in Eq. (97) leads to the deviation from the Liftshitz-Kosevich
form for the magnetization curve.

Because the electron self-energy term in the Fermi liquid approximation
does not [74] remove the energy gap in two dimensions, this term which
arise as the order O(1/N) contribution in the perturbation theory is not
considered in the calculation of thermodynamic potential. However, some
aspects of Coulomb correlation effect is contained in the calculation. For
instance, the correlation effects are included in the mean field definition of
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quasiparticles. In mean-field theory, the thermodynamic potential in Eq.
(97) simplifies to

Ω = − 1
β

X
iωn

Tr ln[−Go
−1(k)] (98)

where the bare Green function is written as Go(k) = 1/(iωn −Ek), and the
Coulomb renormalized band structure is given by

Ek = λo − µ− 2r
2
o

t
(coskxa+ coskya) . (99)

Here, µ denotes the chemical potential. In magnetic fields, the sum over the
band index n and the momentum k (within the magnetic Brilliouin zone)
replaces the Tr in Eq. (98), and the thermodynamic potential is given by

Ω =
2

β

X
k

nD−1X
n=0

ln[1 + e−β(En(k)−µ)] . (100)

Here, nD = q denotes the number of magnetic subbands in the field φ/φo (=
p/q), and the factor 2 accounts for the spin degeneracy. Because the mag-
netic subbands that are away from the center of the spectrum have narrow
bandwidth [69], the Hofstadter spectrum can be approximated as a series of
energy levels and replace the k-space sum byX

k

→
Z

dEkδ(En −Ek) , (101)

where En is the eigenenergy (94). Within this approximation, the skeletons
and the limited fine structure of the subcells for the Hofstadter spectrum
[69] could be calculated in the following way. The thermodynamic potential,
in this approximation, reduces to

Ω =
2g(B)

β

nD−1X
n=0

ln[1 + e−β(En−µ)], (102)

where g(B) = NxNy/q denotes the degeneracy of a band.
The magnetization (per unit area) M curve for a fixed number of parti-

cles is easily computed from the free energy, F = Ω − µN , and it is given
by

M = 2g̃(B)

nD−1X
n=0

f(En)
∂En

∂B
, (103)
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where g̃(B) = 1/nD, and f(E) is the Fermi function. The chemical potential
is redefined: µ̃ = µ− Ξ and the eigenenergy is:

Ẽn =
~eB

m∗n(B)c
(n+

1

2
) . (104)

In Eq. (104), the field dependent effective massm∗n(B) is introduced in order
to describe the deviation of magnetic subbands from the Landau level-like
behavior. It is noted that, in free electron-like systems, the effective mass
does not depend on either the band index or the magnetic field. Because m∗n
measures the band curvature, and the Hofstadter spectrum has a reflection
symmetry about the band center, m∗n = −m∗(nD−1)−n. Hence, only the filling
fraction ν < 1

2 should be considered in the calculation of effective mass.
In two dimensions, the chemical potential oscillates strongly with the

field [8] that this must be computed and must be incorporated in the cal-
culation of thermodynamic properties. For a fixed value of x, the chemical
potential can be computed from

nD
2
(1− x) =

nD−1X
n=0

[eβ(Ẽn−µ̃) + 1]−1 . (105)

6.2 External perturbations in quasi-two dimensional model

Here the influence of a general external perturbation on the magnetization
oscillation in quasi-two dimensions is estimated. In the present discussion,
we refer any strongly anisotropic systems where the hopping matrix ele-
ment tz in the z-direction (parallel to the field) is small compared to the
overlap integral t in the xy-plane (perpendicular to the field) as quasi-two
dimensional systems and write the dispersion relation in low magnetic fields
as

En(kz) = − 2tzcoskzd + Ξ + ~ωc(n+
1

2
) , (106)

where d is the lattice parameter in the z-direction. In this case the variational
parameters eo and λo in Eq. (106) are approximated by replacing them with
the saddle point values in two dimensions. It can be assumed: tz >> ~ωc,
so that there is no energy gap in the spectrum, and the large number of
magnetic subbands crosses the Fermi energy. In contrast to the case in two
dimensions, the oscillation of chemical potential, in quasi-two dimensions, is
weak that it can be approximated as independent of the field.

When the quasiparticles are coupled to an external perturbation, the
self-energy Σex contribution from the interaction dresses the bare Green
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function. Hence, the thermodynamic potential Eq. (98) is written as

Ω = − 1
β

X
iωn

Tr ln[−iωn +Ek +Σex(k)] . (107)

In summing the Matsubara frequency iωn in Eq. (107), it is convenient to
separate the self-energy contribution into the real and imaginary components
by analytically continuing onto the real frequency axis

Σex(ω ± iδ) = ΣR(ω)∓ iΣI(ω) . (108)

Substituting the self-energy Eq. (108) into the thermodynamic potential
Eq. (107) and rewriting Ω in magnetic fields yields

Ω = 2g
X
kz ,n

Z ∞

−∞
dω

π
f(ω) tan−1

ΣI(ω)

ω −En(kz)− ΣR(ω) (109)

where n denotes the magnetic subband index. In Eq. (109), it is noted
that the approximation (101) is used to replace the momentum sum with
an energy integral. By exploiting the similarity between a series of Landau
levels and magnetic subbands in low fields (i.e., q →∞), one can follow the
work [75] of Engelsberg and Simpson. By using the Poisson sum formula

∞X
n=0

F (n) = Re{
Z ∞

0
dxF (x)[1 + 2

∞X
r=1

(−1)rei2πrx] } , (110)

we approximate the discrete sum over n in Eq. (109) with a continuous inte-
gral and the sum over Fourier components r. The substitution of Eq. (110)
into Eq. (109) and the change of variable E

0
= ~ωcx yields the following

expression for the thermodynamic potential

Ω = 2gRe{
∞X
r=1

(−1)r
Z π/d

−π/d
dkz
2π

Z
dω

π
f(ω)

Z ∞

0

dE
0

~ωc
ei

2πrE
0

~ωc tan−1
ΣI

ω −Ez −E0 − ΣR } (111)

where Ez = −2tzcoskzd−eµ. The E0
integration in Eq. (111), is transformed

into a simple contour integral by following three steps: first, apply the inte-
gration by parts method, second, ignore the small end-point contributions,
and finally, extend the lower limit of the integration from −µ̃ to −∞. It
is noted that the last step leads to a small change in the thermodynamic
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potential, but we ignore this difference since it does not affect the oscillatory
part of the potential. Performing the integration over the contour and over
kz in Eq. (111), we simplify the potential to

Ω = −2g~ωcRe{
∞X
r=1

(−1)r
r

ei
2πrµ̃
~ωc Jo(

2πrtz
~ωc

)

Z
dω

2πi
f(ω)ei

2πr
~ωc

(ω−ΣR+ΣI) }
(112)

where the Bessel function Jo arises from the kz integration. The magneti-
zation is computed from Eq. (112) by fixing the chemical potential

M =
eµ̃

π~cβ

∞X
r=1

(−1)rcos(2πrµ̃
~ωc

)Jo(
2πrtz
~ωc

)
∞X
l=0

e−
2πr
~ωc

[ωl+ζ(ωl)] (113)

where ζ(ωn) = iΣex(iωn). The dominant contribution to the magnetization
curve Eq. (113) comes from the first Fourier harmonic (r = 1). In Eq.
(113), the influence of an external perturbation as described by the self-
energy term modifies the oscillation amplitude. This effect is identical to
the enhancement of cyclotron mass via the self-energy term. This suggests
that when external perturbations are coupled to a quasiparticle, their effects
reduce the amplitude; therefore, as the coupling increases, the amplitude
decreases.
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