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Abstract

We address the problem of continuum limit for path integrals in
quantum systems where the operator ordering is ambiguous. A two-
dimensional (2d) electron in a harmonic potential in the presence of a
perpendicular magnetic field serves as a toy model. We, first, reorder
operators in the Hamiltonian following a special “antiordering” proce-
dure to obtain correct continuum limit. We use adiabatic expansion
to present a propagator as a path integral for slow variables. We then
show that the “antiordering” procedure solves the problem only in the
case of projection onto the lowest Landau level.

PACS: 73.20.Fz, 72.15.Rn

The problem of continuum limit for path integral formalism is of a great
interest [1—3]. If this limit exists, it must correspond to a particular op-
erator ordering in the Hamiltonian. One can illustrate this problem in the
simplest case of an electron in a magnetic field. The correct continuum limit
is obtained only if the vector-potential in the phase-space path integral is
evaluated in the midpoint of each interval (midpoint rule) which corresponds
to a symmetric ordering of coordinate x and momentum p̂ operators. In
general case the orders of integration and the continuum limit cannot be
interchanged. This procedure fails for both configuration-space and phase-
space path integrals [4]. The coherent-state representation of propagators [5]
as well-defined phase-space path integrals on continuous phase-space paths
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was proposed [4], including a special “antiordering” procedure. In Appendix
we illustrate this method for a one-dimensional (1d) quantum oscillator.

Present work was motivated by the idea of adiabatic expansion proposed
in [6]. This paper considers an electron in a 2d plane and a perpendicular
magnetic field in the presence of an arbitrary potential V (x, y). After the
standard change of variables in the magnetic field B

π̂ = p̂− eA

c
, X̂ = x− cπ̂y

eB
, Ŷ = y +

cπ̂x
eB

, (1)

where introduced operators have the following commutation relations:

[X̂, Ŷ ] =
ic

eB
, [π̂x, π̂y] =

ieB

c
, [X̂, π̂x,y] = [Ŷ , π̂x,y] = 0. (2)

(operators X and Y are called guiding center coordinates) the Hamiltonian
is then presented as

Ĥ =
π̂2x
2m

+
π̂2y
2m

+ V (X̂ +
cπ̂y
eB

, Ŷ − cπ̂x
eB
). (3)

The idea of adiabatic expansion [6] is to treat slow variables X(t) and
Y (t) as functions of time, while keeping π̂x and π̂y as operators in the
path integral. Then it is possible to write down a Schrödinger equation
for the fast variable πy considering X and Y as fixed parameters. Using
solutions of this equation in the adiabatic basis (wavefunctions ψn (πy,X, Y )
and eigenenergies �n (X,Y )) one finally obtains a propagator for X(t) and
Y (t) with an effective action S, which can be treated semiclassically.

S =

Z tf

ti

·
eB

2c
(Y Ẋ −XẎ ) + fn(X,Y )Ẋ + gn(X,Y )Ẏ − �n(X,Y )

¸
dt, (4)

where fn(X,Y ) = ihψn | ∂
∂X | ψni , gn = ihψn | ∂

∂Y | ψni (we put ~ ≡ 1
through the rest of the paper). The sum of the second and third terms rep-
resent the Berry phase as was mentioned in [6]. This effective action allows
to calculate eigenvalues of energy using semiclassical quantization condition
[6—8]. It can further serve as the starting point in the investigation of the
floating of extended states at low magnetic fields in quantum Hall systems
[9—12]. Tunneling in the presence of a perpendicular magnetic field can be
studied as well. The formalism of [6] uses arbitrary operator ordering, but
according to [4, 5], a phase-space path integral formalism cannot define the
correct continuum limit. In order to check whether the procedure proposed
in [4] would allow to avoid this ambiguity and improve the accuracy of the
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results we consider below a toy model: an electron in a 2d harmonic potential
in the presence of a perpendicular magnetic field.

First, we describe briefly the “antiordering” procedure, proposed in [4].
Starting with the Hamiltonian H(p, q), one defines annihilation and creation
operators

â =
1√
2
(q + ip̂)), â† =

1√
2
(q − ip̂)), (5)

and then using commutation relation [â, â†] ≡ 1 , “antiorders” them, i.e.
puts operator â† to the right of operator â. “Old” coordinates q and p
are then substituted back producing a Hamiltonian h(p, q). Next step is to
present a propagator in the following form

< pf , qf | exp(−iĤt/) | pi, qi >
= lim

ν→∞ 2πe
νt/2

Z
dµνW exp

·Z
i
1

2
(pdq − qdp)− i

Z
h(p, q)dt

¸
, (6)

where

dµνW = N−1 exp
·
− 1
2ν

Z ¡
ṗ2 + q̇2

¢
dt

¸Y
t

dp(t)dq(t). (7)

can be interpreted as a Wiener measure with diffusion constant ν. We
illustrate how this method works in Appendix by considering a 1d harmonic
oscillator.

Now we apply the formalism described above to a special case of the
system considered in [6]. The presence of a (real) magnetic field leads to
a nontrivial couplings between (X,Y ) and (πx, πy) coordinates as we show
below. We consider quadratic potential and treat πy as a coordinate and π̂x
as a momentum conjugate. The Hamiltonian is then presented as

Ĥ =
π̂2x
2m

+
π2y
2m

+
mγ2

2

¡
X2 + Y 2

¢
+
γ2

ωc
Xπy−γ2

ωc
Y π̂x+

γ2

2mω2c

¡
π̂2x + π2y

¢
. (8)

Combining coordinate and momentum terms we finally obtain

Ĥ =

µ
mω2c
2

+
mγ2

2

¶µ
c

eB
πy +

ωcγ
2X

ω2c + γ2

¶2
+

µ
1

2m
+

γ2

2mω2c

¶µ
π̂x − mωcγ

2Y

ω2cγ
2

¶2
+

mω2cγ
2

2 (ω2c + γ2)

¡
X2 + Y 2

¢
,

(9)
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where the last term is simply added to the energy. The solution of the
Schrödinger equation with the Hamiltonian from Eq. (9) for the fast variable
πy is then easily found

Ψ = N exp

"
−MeffΩ

2

µ
c

eB
πy +

γ2X

ω2c + γ2

¶2#

×Hn

·µ
c

eB
πy +

γ2X

ω2c + γ2

¶p
MeffΩ

¸
exp

·
iπymcωcγ

2Y

(ω2c + γ2)

¸
, (10)

where the last multiplier appears due the momentum shift.
We now calculate two terms corresponding to Berry phase. It can be

easily shown that fn(X,Y ) = i < ψn | ∂
∂X | ψn >= 0 for any n due to

the fact that Hermitian polynomials with different n are orthogonal with
Gaussian weight. Another exercise in calculation of Hermitian functions
shows that gn = i < ψn | ∂

∂Y | ψn >= γ4X

(ω2c+γ
2)2
.

Now we write down a Lagrangian for the variables X and Y as proposed
in [4].

L =
i

2ν

³
Ẋ2 + Ẏ 2

´
−mγ2ω2c

2

¡
X2 + Y 2

¢
+
mωc

¡
ω4c + 2ω

2
cγ
2
¢

2 (ω2c + γ2)2

³
Y Ẋ −XẎ

´
.

(11)
where the last term was obtained after substitution of the expression for
gn and integration by parts. Eq. (11) represents a Lagrangian of a 2d
electron in a harmonic oscillator well and a transverse magnetic field [13]
(see also Appendix and Eq. (25)). After identifying effective frequency

Ω0eff ≈ imωcν
2

³
1− γ4

(ω2c+γ
2)2

´µ
1 +

iγ2(ω2c+γ2)
mω2cν(ω

2
c+2γ

2)

¶
(as it is done in Appendix)

and multiplying by exp(mωcνt/2) (as was proposed in [4]) we find that the
propagator

K ∝ exp
£
mωcνt
2

¤
sinh

h
Ω0eff t

i ∝ exp · mωcγ
4t

2 (ω2c + γ2)2
ν

¸
, (12)

diverges as ν →∞ and the proposed procedure fails.
It was later realized [14] that the presence of Berry phase resulting in

nonconstant magnetic field B(1 + ∂fn/∂Y − ∂gn/∂X) causes modification
of the proper Wiener measure [15, 16]. The divergent exponential term is
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now presented as

exp

·
ν

2

Z µ
1 +

∂fn
∂Y
− ∂gn

∂X

¶
dt

¸
. (13)

The appearance of exp[−ν/2 R (∂gn/∂X)dt] cancels exactly with the diverg-
ing term in Eq. (12).

After scrupulous consideration it became clear that to take care of di-
verging terms post factum is a wrong way. The problem was to derive the
convergence factor in a 2d system with constant magnetic field a priori, that
would not depend on the terms resembling nonuniform magnetic field which
may appear in the process of calculation from integrating out some degrees
of freedom. Detailed derivation of the effective propagator for the “slow”
variables X and Y which takes into account the “antiordering” procedure
from the very beginning has shown that in addition to the Berry phase two
more terms appear in the effective action. The reason for the emergence of
two additional terms is that the Brownian motion paths are continuous and
nowhere differentiable. We describe this derivation [14] below.

After solving a Schrödinger equation for the fast variable πy in the adi-
abatic approximation

H (X,Y, π̂x, πy) | ψn (πy,X, Y )i = �n (X,Y ) | ψn (πy,X, Y )i (14)

one has to substitute a resolution of unity, given by

1 =
X
n

| ψn (πy,X, Y )ihψn (πy,X, Y ) |

with X,Y values chosen at appropriate time slices into the T-product of the
propagator for X,Y :

hXf , Yf , πyf , tf | exp(−iĤ(tf − ti)) | Xi, Yi, πyi, tii

= limν→∞ 2πeνt/2
R
dX(t)dY (t)

P
n ψ

B
n (Xf , Yf , πyf )ψn (Xi, Yi, πyi)

× limδ→0
QN

l=0hψn (Xl+1, Yl+1) | ψn (Xl, Yl)ie−iδ�n(Xl,Yl).
(15)
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Usually one assumes that

lim
δ→0

NY
l=0

hψn (Xl+1, Yl+1) | ψn (Xl, Yl)i = exp
µ
i

Z tf

ti

hψ (X,Y ) | d
dt
| ψ (X,Y )i

¶
.

(16)
This is indeed correct result for continuous and differentiable pathX(t), Y (t),
but in the present regularization, the Brownian motion paths are continuous
and nowhere differentiable. To get the right limit we observe that

h2 | 1i = 1

2
[h2 | 1i+ h1 | 2i] + 1

2
[h2 | 1i− h1 | 2i]

= 1− 1
2
[h2 | (| 2i− | 1i) + (h2 | −h1 |)i2 |] + 1

2
[h2 | 1i− h1 | 2i]

= 1− 1
2
[(h2 | −h1 |)(| 2i− | 1i)]− 1

2
[(h2 | +h1 |)(| 2i− | 1i)], (17)

where we have used h1 | 1i = h2 | 2i = 1. Thus, with the accuracy including
square terms

h2 | 1i ' exp [− 1
2
[(h2 | +h1 |)(| 2i− | 1i)]

−1
2
[(h2 | −h1 |)(| 2i− | 1i)]− 1

2
[h2 | (| 2i− | 1i)]2] (18)

where the last term is simply a sum of the first two terms squared and
multiplied by the corresponding coefficient in Taylor series. It is introduced
to make both sides in Eq. (18) equal including terms of the second order. It
is easy to show that the first term in the exponent indeed leads to Eq. (16)
and one can use

ihψn | d

dt
| ψni = ihψn |

∂

∂X
| ψniẊ + ihψn |

∂

∂Y
| ψniẎ

≡ fn(X,Y )Ẋ + gn(X,Y )Ẏ (19)

to produce expression as in [6] Two other terms in the exponent of Eq. (18)
are zero for continuous and differentiable paths, but are different from zero
for Brownian motion paths! For Brownian paths, where ν plays the role of
diffusion constant, one has (δ > 0) h[X(t+ δ)−X(t)]2i = νδ (the same for
Y ). The second term in the exponent of Eq. (18) is then given by (one of
the Ito rules)

−1
2

Z
dtkd | ψik2 = −ν

2

Z
dt

·
k ∂ψ
∂X

|2 + k ∂ψ
∂Y
|2
¸
. (20)
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The last term in the exponent is

−1
2

Z
dt | hψ | dψi |2= ν

2

Z
dt
¡
f2n + g2n

¢
. (21)

Now we have to add those three terms to the effective Lagrangian in Eq.
(11). Accurate evaluation of Eq.(19)-(21) produces the following result

exp

·
− νtmωcγ

4

2 (ω2c + γ2)2
(2n+ 1)

¸
. (22)

Repeating the procedure that led to Eq. (12) and multiplying the re-
sult by the correction term obtained in Eq. (22) we finally obtain for the
propagator

K = lim
ν→∞

X
n

exp

·
−it

µ
ωc +

γ2

ωc

¶µ
n+

1

2

¶¸
ψ∗n (qf ,Xf , Yf )ψn (q0,X0, Y0)

×mωc
¡
ω4c + 2ω

2
cγ
2
¢

4π (ω2c + γ2)2
exp [F (Xf , Yf ,X0, Y0)] exp

·
− νtmωcγ

4

2 (ω2c + γ2)2
2n

¸
,

(23)

where F is a regular function depending on initial and final positions. As
one can see all terms with n > 0 vanish as ν tends to infinity. We therefore,
conclude that the applied method produces correct continuum limit only for
the zero Landau level.

In summary, we have considered the problem of continuum limit for
path integrals in quantum systems where the operator ordering is ambigu-
ous. We have shown that special “antiordering” procedure proved to solve
the problem correctly for one-dimensional systems fails for two-dimensional
systems in the perpendicular constant magnetic field. We have illustrated
both results using exactly solvable models. In particular, the failure of the
procedure was shown for a two dimensional electron in a harmonic potential
in the presence of a perpendicular magnetic field. We can speculate that the
origin of the failure for the “antiordering” procedure lies in its “by force”
introduction after adiabatic expansion. On the other hand, its introduc-
tion before adiabatic expansion for all four variables, will immediately affect
Schrödinger equation for the fast variables.

I would like to thank John R. Klauder and Baruch Horovitz for fruitful
discussions.
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Appendix

We want to illustrate a method proposed by Klauder and Daubechies in [4]
by a simple example of a 1d harmonic oscillator. After introduction of the
new measure and a proper “antiordering” the Lagrangian according to [4]
is presented as

L1D =
i

2ν
(ṗ2 + q̇2) +

1

2
(pq̇ − qṗ)− 1

2
(q2 + p2) +

1

2
, (24)

where additional one-half appears due to the “antiordering”. If we take into
account that in a coherent states representation p and q are independent
then it turns out that the Lagrangian L1D has the same structure as a
Lagrangian for a 2d electron in a harmonic oscillator well and a transverse
magnetic field mentioned above [13].

L2D =
m

2
(ẋ2 + ẏ2) +

mω

2
(xẏ − yẋ)− mΩ2

2
(x2 + y2). (25)

The propagator for L2D is calculated exactly:

K(xf , yf , t | xi, yi, 0) =
mΩ0

2πi sin(Ω0t)
exp[i

mΩ0

2 sin(Ω0t)
(cos(Ω0t)

×(x2f + y2f + x2i + y2i )− 2 cos(ωt/2)(xfxi + yfyi)

+2 sin(ωt/2)(xfyi − xiyf ))], (26)

where Ω0 = (Ω2 + ω2

4 )
1/2. Comparing Eq. (24) and Eq. (25) we find

relations between the parameters of two Lagrangians: m = i/ν, Ω2 = −iν
and ω = −iν. For large ν we approximate Ω0 ≈ iν

2 − 1. Substituting those
values into Eq. (26), multiplying expression by exp(νt/2) and taking the
limit ν →∞ we finally obtain

K(pf , qf , t|pi, qi)0) = exp[−1
4
(p2f+q

2
f+p

2
i+q

2
i )+

1

2
(qf−ipf )(qi+ipi)e−it− it

2
],

(27)
which is the exact solution for a propagator of a 1d harmonic oscillator in a
coherent states representation [5].

160



References

[1] S.A. Albeverio and R.J. Hoegh-Krohn, Mathematical Theory of Feyn-
mann Path Integrals (Springer, Berlin, 1976).

[2] D. Fujiwara, Duke Math. J. 47, 559 (1980).

[3] I. Daubechies and J.R. Klauder, J. Math. Phys. 23, 1806 (1982).

[4] I. Daubechies and J.R. Klauder, J. Math. Phys. 26, 2239 (1985).

[5] L. Shulman, Techniques and Applications of Path Integration (Wiley,
New York, 1981).

[6] A. Entelis and S. Levit, Phys. Rev. Lett. 69, 3001 (1992).

[7] D. Yoshioka and H. Fukuyama, J. Phys. Soc. Jpn. 61, 2368 (1992).

[8] When we used the results of [6] for eigenenergies of a 2D electron in an
isotropic harmonic bowl and a transverse magnetic field, we have found
an agreement with the exact result [7] including terms of the order 1/B
and deviations in the terms of the order 1/B3. Formal application of
the “antiordering” procedure have not improved the accuracy of the
results and, therefore, have raised a question of the applicability of the
method after adiabatic expansion, which is the subject of this paper.

[9] D.E. Khmelnitskii, Phys. Lett. 106, 182 (1984); JETP Lett. 38, 556
(1983); R.B. Laughlin, Phys. Rev. Lett. 52, 2304 (1984).

[10] V. Kagalovsky, B. Horovitz, and Y. Avishai, Phys. Rev. B 52, R17044
(1995).

[11] T.V. Shahbazyan and M.E. Raikh, Phys. Rev. Lett. 75, 304 (1995).

[12] F.D.M. Haldane and Kun Yang, Phys. Rev. Lett. 78, 298 (1997).

[13] G.J. Papadopoulos, J. Phys. A 4, 773 (1971).

[14] J.R. Klauder, private communications (1994).

[15] R. Alicki, J.R. Klauder and J. Lewandowski, Phys. Rev. A 48, 2538
(1993).

[16] P. Maraner, Mod. Phys. Lett. A 1, 2555 (1992).

161


